
Yocto
Learning

Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

VCS: 2094a49d

Li-Pro.Net
Li-Pro.Net — Documentation

Mar 03, 2021

Li-Pro.Net
Jena, Germany

Email: info@li-pro.net

Table of Contents:

1 Challenge 9
1.1 Example: UI Toolkits . 9
1.2 Collaboration . 10
1.3 Market . 10
1.4 Vendor and Contractor . 11
1.5 Community . 11
1.6 Business . 12
1.7 Domains . 12

2 Intentions 13

3 Decision 15
3.1 Android . 15
3.2 Baserock . 16
3.3 Buildroot . 16
3.4 OpenEmbedded . 16
3.5 OpenWrt . 17
3.6 Reflection . 17

4 About 19
4.1 Governance Structure . 20
4.2 Achievement and Standing . 20
4.3 Offer and Support . 21
4.4 Yocto Project Provides . 22
4.5 Yocto Project Community . 24

5 Terms, Concepts, Idioms 27

6 Git Repo Manifest 31
6.1 Platform Manifest . 32
6.2 Platform Pipeline . 35

7 Build System 37
7.1 Configuration Area . 38
7.2 Metadata Area . 39

i

7.3 Source Area . 40
7.4 Package Area . 41
7.5 BitBake Tool Area . 42
7.6 Images Area . 43
7.7 SDK Area . 44

8 User Configuration 45
8.1 bblayers.conf . 47
8.2 local.conf . 47
8.3 setup-environment . 48

9 Metadata Layers 49
9.1 Meta Layer Types . 51
9.2 Meta Layer Stack . 52
9.3 Meta Layer Machines . 52

9.3.1 hydrogen.conf . 52
9.3.2 helium.conf . 53

9.4 Meta Layer Distros . 54
9.4.1 cedi.conf . 54

9.5 Meta Layer Images . 55
9.5.1 central-image.bb . 55
9.5.2 central-image.bbclass . 56
9.5.3 central-image-version.bbclass . 57
9.5.4 packagegroup-central-boot.bb . 58
9.5.5 packagegroup-central-tools-testapps.bb . 58

10 Source Files 61
10.1 Upstream Project Releases . 63
10.2 Local Projects . 63
10.3 Source Code Manager (optional) . 63
10.4 Source Mirror(s) . 64

11 Package Feeds 65

12 BitBake Tool 67
12.1 Inherit . 67
12.2 Fetching . 68

12.2.1 Fetching in Recipe . 69
12.3 Patching . 69

12.3.1 Patching in Recipe . 70
12.4 Compilation . 70

12.4.1 Compilation in Recipe . 71
12.5 Packaging . 71

12.5.1 Packaging in Recipe . 72
12.6 Image Generation . 72
12.7 SDK Generation . 74

13 Images 75

14 Application Development SDK 77

ii

15 Final Closer Look 81

16 Read-The-Docs 83
16.1 Documentations . 83
16.2 Presentations . 84
16.3 Books . 85

17 Thank You 87

Appendices 89

A General Information 89
A.1 License . 89
A.2 Credits . 97

B Glossary 99
B.1 Common Terms . 99
B.2 Programming Languages . 101
B.3 Technologies . 103

Acronyms 109

Listings 111

List of Tables 113

List of Figures 115

List of Equations 117

List of Downloads 119

List of Issues 121

Bibliography 123

Index 125

iii

iv

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

SUMMARY

Abstract This document is an effort by Li-Pro.Net — Documentation and aims to improve tech-
nical understanding and usage of describe piece of tools and frameworks. In short words:
Learning Yocto.

Involved Components

• Git – Repo and Manifest

• Yocto – Terms and Workflow

• Bitbake – Layer and Recipies

Audience

• System Architects

• Hard- and Software Developers

• Integrators and Testers

Status preliminary (some mature, much in progress)

Version 0.0.0

Release 0.0.0-75-g2094a49

Date Mar 03, 2021

Authors Li-Pro.Net — Documentation

• Stephan Linz <linz@li-pro.net>

Copyright Copyright © 2018‒2021 Li-Pro.Net and individual contributors. — All rights reserved.

License This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. For details of the terms and definitions, representations, warranties and disclaimer
see the file LICENSE that comes with the documentation and/or read the online version
(CC-BY-SA-3.0).

Credits See the file CREDITS that comes with the documentation for a list of all well known
contributors.

Organization Li-Pro.Net

Contact info@li-pro.net

Address Jena, Germany

1

mailto:linz@li-pro.net
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
mailto:info@li-pro.net

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

2

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

PREAMBLE

Learning Yocto.

This document introduce to the Yocto framework, their intentions of use and their main focus and area of
application. The format of the document is an online presentation, but is also prepared simultaneously as a
minimalistic reference guide and covers the following topics:

• Domain and Tool Landscape

• Concepts, Workflow and Build System

• Dive into the deep – coming soon

For easier creation, editing and maintenance, this documentation is written using the reStructuredText syn-
tax and processed using the Sphinx text processor. The presentation and distribution in HTML or PDF formats
are only a result of processing with Sphinx from the underlying reStructuredText sources.

Thus, the methodology of “Programmable Documentation” is applied here. A Travis-CI server performs the
Sphinx processing. Its results are considered to be official and can be accessed using the following links:

Li-Pro.Net Learning Yocto — LATEST

• online presentation — THE SHOW

• online document

• printable document

Prerequisites to readers’ skills

For a better understanding it is necessary that the following terms and methods are known and preferably
practiced day by day:

Revision Controll Systems

• Git

• Subversion

• Mercurial

• Principals of work

• Collaboration work

Configuration and Build Tools

• Kconfig + GNU Make

• Autotools and CMake

• Qmake

• Ninja

• Source Code Patching

• Triad: config → make → install

• Canadian Cross: build → host → target

3

https://lipro.github.io/lpn-show-learning-yocto/revealjs
https://lipro.github.io/lpn-show-learning-yocto/html
https://lipro.github.io/lpn-show-learning-yocto/lpn-doc-learning-yocto.pdf

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Distribution and Packaging

• Debian Packages: *.deb

• Red Hat Packages: *.rpm

• Open Packages: *.opkg / *.ipkg

• System Root: SYSROOT

• Destination Directory: DESTDIR

• Package Repository (Server)

Scripting

• Bash

• Python

• Perl (rarely)

4

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

LEGAL NOTICE

Learning Yocto.

 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. For details of the terms and definitions, representations, warranties and disclaimer see the file
LICENSE that comes with the documentation and/or read the online version (CC-BY-SA-3.0).

Creative Commons Legal Code

Attribution-ShareAlike 3.0 Unported

See Listing 1.1, License text of “Learning Yocto” (page 89), for the complete text that comes within this
document.

You are free:

to Share —to copy, distribute and transmit the work

to Remix —to adapt the work to make commercial use of the work

Under the following conditions:

Attribution —You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Share Alike —If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

Waiver —Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain —Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights —In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

5

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

6

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

VERSION HISTORY

Table 1: Document Revisions of “Learning Yocto”
Version Change Passed Date
0.0 document skeleton, project created Stephan Linz 2018-01-22

7

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

8

1
Challenge

?
Figure 1.1: The Open Source Challenge

1.1 Example: UI Toolkits

–English Wikipedia: Linux#Desktop

9

https://en.wikipedia.org/wiki/Linux#Desktop

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

libinput

possibly adaptations to Wayland/Mir possibly adaptations to Wayland/Mir possibly adaptations to Wayland/Mir

libxserver

X-Server
X.Org
Xfree86
X-Win32
X11.app

window
manager
metacity
mutter
KWin
Compiz

Linux kernel, device drivers & other modules

netfilter

radeon nouveau lima etna_viv freedreno tegra-re

? kdbus ?evdev kms (Kernel Mode Setting)

Hardware

drm (Direct Rendering Manager)

D
-B

u
s-

D
a
e
m

o
n

CPU & GPU
cache coherent L2-Caches

main memory

Keyboard & Mouse
Touch-Screen
BrailleDisplay

Ethernet
802.11-(abc)
Bluetooth

UMTS/CDMA/LTE
GPS-receiver
G-sensor

sy
st

e
m

d
(c

o
n
ta

in
s

u
d
e
v
)

u
n
e
tw

o
rk

N
e
tw

o
rk

M
a
n
a
g
e
r

p
a
ck

a
g

e
ki

td

P
u
ls

e
A

u
d

io
-d

ALSA: emu20k1, ctxfi, hda... ath9k

kmod-fs-ext4

kmod-ltq-atm-vr9

Media Application 3D Application2D Application

SELinux
TOMOYO
Smack

AppArmor

u
d

is
ks

System daemons:

a
v
a
h
i-

d
a
e
m

o
n

User Interface Toolkits (in the form of libraries):

glibc
µClibc

GLib
GObject

Glib
GModule
GThread

GIO

System libraries:

libwayland-server

Wayland Compositor

weston, clayton, mutter, KWin

G
N

O
M

E
 S

h
e
ll

P
la

sm
a
 2

C
a
ir

o
-D

o
ck

C
in

n
a
m

o
n

Desktop Shells:

Display server:

Qt
libwayland-client

GTK
Pango

Cairo (Xr)
libwayland / COGL

ATK EFL
libwayland-client

SDL
libwayland-client

Alternative display servers:

D e s k t o p w i d g e t s

E
n
lig

h
t.

 D
R

1
9

SF
SurfaceFlinger

window
manager

AWM

libmir-serv

mir
mir window

manager
Compiz

libbioniclibhybris

U
n
it

y

Ubuntu Android

Widgets for
Unity and Plasma

Clutter

GNUstep
wxWidgets

FLTK
...

libwayland-client
libX/libXCB

Linux kernel
(Android-forked)

binder ashmem pmem
loggerwakelocks ...

Figure 1.2: Example: UI Toolkits

1.2 Collaboration

Figure 1.3: Collaboration as a Solution

1.3 Market

10 Chapter 1. Challenge

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

→ that are:

• Customer and User

• Retailer and Service

→ which are constantly looking for:

• Improvements and Bug Fixes (updates)

• Features and Extensions (back ports)

• Documentation and Tests

1.4 Vendor and Contractor

→ all participants and partners:

• Engineers

• Business Owners

• Compliance Offices

→ have to ensure results with:

• protected release base line: Software Configuration Management Plan (SCMP)

• build and test: Continuous Integration (CI)

• DISTRIBUTION: Continuous Deployment / Delivery (CD)

1.5 Community

→ what is their role �

• best efforts to COOPERATE with and MUTUAL ASSISTANCE the business

• � free of charge: SCALE, BE FAST, pay later

• � open for business: SHARE WITH ALL, no protection, survival of the fittest

• � passing grade: BEST FOR ALL, acceptance

• ㊙ secret: kick out the Troll

1.4. Vendor and Contractor 11

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

1.6 Business

→ where and who am I �

• mostly I am a tiny candle in front of the biggest star of all

• leads to: relation of � candle / � star

• ask you: what is MY BUSINESS � candle

• ask you: what is THE COMMUNITY � star

my experience of the last 20 years:

10–40 % � candle / 90–60 % � star

1.7 Domains

→ the COMMUNITY – there are we all ‼

• Market with its Suppliers and Vendors

• Contractors and their Principals

→ we should take over the WORKFLOWS ‼

• Infrastructure

• Frameworks

• Toolboxes

12 Chapter 1. Challenge

2
Intentions

Understanding the reasons behind the decision to use a specific tool for product development requires a
closer look at the various perspectives of all the involved participants, from the perspective of:

1 – Product Management

which hard- and software features we have, and need for a specific product → feature sets

2 – Feature Management

how the distribution looks for a given feature set → composing

3 – Distribution Management

which packages will needed for a given distribution / composing → flavor

4 – Package Management

how to build and deploy the given list of packages and their dependencies

5 – Deployment Management

what have to share and how to distribute all the resulting artefacts

13

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

6 – QA Management (Test, Integration)

how to ensure accuracy of all the development, in parts and altogether

14 Chapter 2. Intentions

3
Decision

This section contains direct excerpts and quotes from publicly accessible presentations: [Str15][OMM15]. —
 © 2015 The Linux Foundation.

Embedded Linux Landscape

• Android

• Baserock

• Buildroot

• OpenEmbedded

• OpenWrt

• The Yocto Project

• Commercial Distributions

Reflection

• Buildroot ↔ The Yocto Project

3.1 Android

→ https://source.android.com/

• Great for systems with ARM-based SoCs and touch screens

• Build system and development tools by Google

• Java based system runtime environment on target

• Stable and widely accepted Java API for final applications

• Very limited adaptability for vendors, contributors or customers

15

https://source.android.com/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

3.2 Baserock

→ https://www.baserock.org/

• Targeted for embedded appliances

• Slightly pushed by the GENIVI Alliance

• Native Builds for x86, x86_64, ARMv7

• Based on Morph workflow tool

• Maintained by Codethink Ltd.

Last releases in 2016. → https://wiki.baserock.org/releases/

3.3 Buildroot

→ https://buildroot.org/

• Targeted for complete Linux root filesystem build

• Generate a cross-compilation toolchain

• Simplifies and automates the building

• uClibc or musl target library

• BusyBox command line utility applications

• Based on Kconfig and GNU Make build tool

• Promoted by french non-profit Buildroot Association

3.4 OpenEmbedded

→ https://www.openembedded.org/

• Created by merging OpenZaurus with contributions from Familiar Linux, OpenSIMPad into a common
code base

• Focusing on broad hardware and architectures

• Based on BitBake build engine

• Technology code base for the Yocto Project and the Ångström Distribution

The Ångström Distribution was widely used on TI-based embedded boards like the BeagleBoard and
PandaBoard and uses the Yocto Project build environment. Last releases in 2017 (2020). →
https://github.com/Angstrom-distribution

16 Chapter 3. Decision

https://www.baserock.org/
https://wiki.baserock.org/Morph/
http://codethink.co.uk/
https://wiki.baserock.org/releases/
https://buildroot.org/
https://www.uclibc-ng.org/
https://www.musl-libc.org/
https://busybox.net/
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.gnu.org/software/make/
https://buildroot.org/association.html
https://www.openembedded.org/
https://github.com/openembedded/bitbake
https://github.com/Angstrom-distribution

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

3.5 OpenWrt

→ https://www.openwrt.org/

• Debuted as open source OS for embedded devices routing network traffic

• Originally created from Linksys GPL sources for their WRT54G residential gateway

• Targeted thousands of different hardware

• Buildroot-based build environment

• Headless operation with web UI

• Member of Software Freedom Conservancy (like Git, Inkscape, or Qemu)

3.6 Reflection

→ https://lwn.net/Articles/682540/ (ELCE-2016, ELCE-2018, Youtube)

Buildroot Yocto Project
Minimal Size: 2.2 MB 4.9 MB
Build Time: 15-45 minutes 1-2 hours (at least)
Concept: single Makefile layered classes
Complexity: being simple by design, only

patchable
multiple aspects of composing and

QA
Composing: multiple Kconfig file feature driven
State Cache: compiler only on task level (states)

Buildroot Yocto Project
Rebuild: full (will be improved) partial per task / on changes
Meta/Configure: fixed sharable
Output: no packages or SDK images, packages, SDK, licenses,

manifests
Reliance: no QA workflow documented QA and RM
3rd Party: rare, some few many (growing)
Decision: Yocto Project

3.6. Reflection 17

https://www.openwrt.org/
https://openwrt.org/toh/start
https://sfconservancy.org/
https://lwn.net/Articles/682540/
https://bootlin.com/pub/conferences/2016/elc/belloni-petazzoni-buildroot-oe/belloni-petazzoni-buildroot-oe.pdf
https://elinux.org/images/9/9a/Buildroot-vs-Yocto-Differences-for-Your-Daily-Job-Luca-Ceresoli-AIM-Sportline.pdf
https://youtu.be/wCVYQWFIvBs

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

18 Chapter 3. Decision

4
About

This section contains direct excerpts and quotes from publicly accessible presentations: [Str15][OMM15]. —
 © 2015 The Linux Foundation.

The Yocto Project® is an open source collaboration project that helps developers create custom Linux-based
systems for embedded products, regardless of the hardware architecture. For additional information about
the project, please visit: About the Yocto Project.

What is the Yocto Project?

• Open source project with a strong community

• A collection of embedded projects and tooling

– Place for Industry to publish BSPs

– Application Development Tools including Eclipse plug-ins and emulators

• Key project is the reference distribution build environment (Poky)

– Complete Build System for Linux OS

– Releases every 6 months with latest (but stable) kernel (LTSI), toolchain, and package versions

– Full documentation representative of a consistent system

Yocto Project

1. It’s not an embedded Linux distribution – it creates a custom one for you.

2. It is an Ecosystem.

The Yocto Project combines the convenience of a ready-to-run Linux Distribution with the flexibility of a
custom Linux operating system stack. [Str15][OMM15] — © 2015 The Linux Foundation and Yocto Project.

19

https://www.yoctoproject.org/about

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

4.1 Governance Structure

→ Ecosystem and Showcase

• based on meritocracy (leadership by demonstrated achievement)

• managed by its chief architect, Richard Purdie, a Linux Foundation fellow

• remain independent of any one of its member organizations

Who is the Yocto Project?

Advisory Board and Technical Leadership

• Organized under the Linux Foundation

• Individual Developers

• Embedded Hardware Companies

• Semiconductor Manufacturers

• Embedded Operating System Vendors

• OpenEmbedded (OE) / LTSI Community

Linux Foundation

The Yocto Project is a lab workgroup of the Linux Foundation, who owns its trademark.

4.2 Achievement and Standing

• open source collaboration project

• founded in 2010 as a collaboration among many hardware manufacturers, open-source operating sys-
tems vendors and electronics companies

• help you create custom Linux-based systems for embedded products

• regardless of the hardware architecture

• provides templates, tools and methods (Best-Practice)

20 Chapter 4. About

https://www.yoctoproject.org/ecosystem
https://www.yoctoproject.org/ecosystem/yocto-project-compatible-product-showcase
https://www.linuxfoundation.org/about/fellows/
https://www.linuxfoundation.org/en/projects/
https://www.linuxfoundation.org/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

What the Yocto Project Provides

• The industry needed a common build system and core technology

– BitBake and OpenEmbedded Core = OE (OpenEmbedded) build system

• The benefit of doing so is:

– Designed for the long term

– Designed for embedded

– Transparent Upstream changes

– Vibrant Developer Community

Best Practices

Less time spent on things which don’t make money (build system, core Linux components)

More time spent on things which do make money (app & product development, …)

4.3 Offer and Support

• resources and information for new and experienced users

• core system component recipes by OE

• example code to demonstrate its capabilities

• include the Yocto Project Linux kernel

• covers several build profiles across multiple architectures: ARM, PPC, x86, and more

• BSP (Board Support Package) layers for customer or vendor specific platform support

• BSP layers follow a predetermined and standardized format

Why Should a Developer Care?

• Build a complete Linux system – from source – in about an hour (about 90 minutes with X)

– Multiple cores (i.e. quad i7)

– Lots of RAM (i.e. 16 GB of ram or more)

– Fast disk (RAID, SSD, etc…)

• Start with a validated collection of software (toolchain, kernel, user space)

• Blueprints to get you started quickly and that you can customize for your own needs

• We distinguish app developers from system developers and we support both

4.3. Offer and Support 21

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

• Access to a great collection of app developer tools (performance, debug, power analysis, Eclipse)

• Supports all major embedded architectures

– x86, x86-64, ARM, PPC, MIPS

– MIPS64, ARM Arch 64, PPC64

– and more exotic like MicroBlaze or Nios

• Advanced kernel development tools

• Layer model encourages modular development, reuse, and easy customizations

• Compatibility program that is used to encourage interoperability and best practices

4.4 Yocto Project Provides

ADT => SDK
since release 2.1

Figure 4.1: Yocto Project Deliveries [OMM15]

• embedded tools

• best practices

• reference implementation

22 Chapter 4. About

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

Yocto Project and OpenEmbedded

OpenEmbedded

• Created by merging the work of the OpenZaurus project with contributions from other projects such as
Familiar Linux and OpenSIMpad into a common code base

• Community project focusing on broad hardware and architectures

• Large library of recipes to cross-compile over 1000 packages

• Switched from flat meta-data architecture (OpenEmbedded Classic) to layered architecture based on
OpenEmbedded Core layer, which is in common with the Yocto Project and the Ångström Distribution

Yocto Project

• Family of projects for developing Linux-based devices

• Self-contained build environment providing tools and blueprints for building Linux OS stacks

• Supported by silicon vendors, OSVs (also providing commercial support), open source projects for
hardware and software, electronics companies

• Standardized components with compliance program

• Focused on tooling and maintenance, major release every 6 months

Why not just use OpenEmbedded?

OpenEmbedded

• OpenEmbedded is an Open Source Project providing a Build Framework for Embedded Linux Systems

– Not a reference distribution

– Designed to be the foundation for others

– Cutting-edge technologies and software packages

Yocto Project

• The Yocto Project is focused on enabling Commercial Product Development

– Provides a reference distribution policy and root file system blueprints

– Co-maintains OpenEmbedded components and improves their quality

– Provides additional tooling such as Autobuilder, QA Tests

– Provides tools for application development such as ADT and Eclipse Plugin

4.4. Yocto Project Provides 23

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

4.5 Yocto Project Community

Figure 4.2: The Yocto Project Community [OMM15]

• Linux Foundation: chief architect

• OpenEmbedded: technologies and software

• silicon vendors and electronics companies

The Yocto Project Ecosystem

Product Showcase

• Hardware Platforms

• Distributions – Open Source and Commercial

• Projects – Open Source Project using the Yocto Project

Participants

• Organizations who participate in the Yocto Project Compliance Program

• They also support the project through contributions and engineering resources

Member Organizations

• Organizations who provide the administrative leadership of the Yocto Project

• Their support includes membership dues for infrastructure etc. and engineering re-
sources

24 Chapter 4. About

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

• Members of the Yocto Project Advisory Board

Supporting Organizations

• Organizations who support the Yocto Project through contributions, product develop-
ment, etc.

Yocto Project Branding and Compliance Program

Goals

• Strengthen the Yocto Project through a consistent branding.

• Provide recognition to participating organizations.

• Reduce fragmentation in the embedded Linux market by encouraging collaborative de-
velopment of a common set of tools, standards, and practices and ensure that these
tools, standards, and practices are architecturally independent as much as possible.

Yocto Project Participant

• Organizations and entities who use and support the Yocto Project publicly.

• Open to open source projects, non-profit organizations, small companies, and Yocto Project member
organizations.

Yocto Project Compatible

• Products, BSPs, OpenEmbedded-compatible layers and other open source software projects that are
built and work with the Yocto Project.

• These products and components must be submitted by open source projects, non-profit entities, or
Yocto Project member organizations.

4.5. Yocto Project Community 25

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

26 Chapter 4. About

5
Terms, Concepts, Idioms

Following is a slightly extended list of terms, concepts and definitions users new to the Yocto Project devel-
opment environment might find helpful. While some of these terms are universal, the list includes them
just in such case. A more or less completed version of the list can be found on the following website: Yocto
Project Terms

Terms overall

1. Git Repo (repo): The collection manager that Google has built on top of Git to help manage multiple
Git repositories, does the uploads to Gerrit and automates the Android system image development
workflow. The repo command is an executable Python script that you can put anywhere in your path.
→ https://gerrit.googlesource.com/git-repo/

2. BitBake: The Task executor and scheduler used by the Build System to build Images. The bitbake
command is part of an fancy Python and Bash environment around the BitBake project. → BitBake,
or Yocto Components and Tools → BitBake, or BitBake User Manual

3. Metadata: The files that BitBake parses when building an Images. In general, Metadata provides
Recipes, Classes and Configuration Files. → Metadata, or BitBake User Manual → Overview
→ Introduction

4. OE-Core: A core set of Metadata originating with OpenEmbedded that is shared between OE and the
Yocto Project. → OpenEmbedded-Core (OE-Core), or Yocto Components and Tools → OE-Core, or
OE Wikipedia

5. Poky: The reference distribution of the Yocto Project. It contains the Build System (BitBake and
OE-Core) as well as a set of Metadata to get you started building your own distro (distribution). →
Poky, or Yocto Components and Tools → Poky, or Yocto Reference Distribution

27

https://docs.yoctoproject.org/ref-manual/terms.html
https://docs.yoctoproject.org/ref-manual/terms.html
https://gerrit.googlesource.com/git-repo/
https://docs.yoctoproject.org/ref-manual/terms.html#term-BitBake
https://www.yoctoproject.org/software-overview/project-components
https://www.yoctoproject.org/software-item/bitbake
https://docs.yoctoproject.org/bitbake/index.html
https://docs.yoctoproject.org/ref-manual/terms.html#term-Metadata
https://docs.yoctoproject.org/bitbake/index.html
https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-intro.html
https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-intro.html#introduction
https://docs.yoctoproject.org/ref-manual/terms.html#term-OpenEmbedded-Core-OE-Core
https://www.yoctoproject.org/software-overview/project-components
https://www.yoctoproject.org/software-item/openembedded-core
https://www.openembedded.org/wiki/OpenEmbedded-Core#Introduction
https://docs.yoctoproject.org/ref-manual/terms.html#term-Poky
https://www.yoctoproject.org/software-overview/project-components
https://www.yoctoproject.org/software-item/poky
https://www.yoctoproject.org/software-overview/reference-distribution

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Terms internal

1. Layer: A collection of Recipes representing the core, a Board Support Package (BSP), an application
stack, or any other 3rd party contributions. Layers are hierarchical in their ability to override previous
specifications. → Layer, or in Concept

• list of Yocto Compatible Layers

• list of OpenEmbedded Contributed Layers

2. Image: An artifact of the BitBake build process given a collection of Recipes and relatedMetadata.
Images are the binary output that run on specific target architecture. → Image, or in Concept, or
in Reference

3. Package: Refers to a Recipe’s packaged output produced by BitBake (i.e. a “baked recipe”). A
Package is generally the compiled binaries produced from the Recipe’s sources. You “bake” any
“bin” by running it through BitBake. → Package

4. Package Groups: Arbitrary group of software Recipes. You use Package Groups to hold Recipes
that, when built, usually accomplish a single Task. For example, Package Groups could contain the
Recipes for a company’s proprietary or value-add software. → Package Groups

5. Task: A unit of execution for BitBake (e.g. do_fetch, do_patch, do_compile, and so forth). →
Task, or in Reference

Metadata

1. Classes: Files with the .bbclass file extension that provided for logic encapsulation and inheritance
so that commonly used patterns can be defined once and then easily used in multiple Recipes. →
Classes, or in Concept, or in Reference

2. Recipes: Files with the .bb file extension have a set of instructions for building Packages or Package
Groups or Images and describes where you get source code, which patches to apply, how to configure
the source, how to compile it and so on. It also describe dependencies for libraries or for otherRecipes.
Recipes represent the logical unit of execution. → Recipe, or in Concept

3. Append Files: Files with the .bbappend file extension that append build information to a Recipe.
The Build System respects every Append file to have a corresponding Recipe (.bb) file. → Append
Files

4. Configuration Files: Configuration information in various → Configuration File, or in Concept

Features

Features provide a mechanism for:

1. working out which Packages or Package Groups should be included in the generated Image, typi-
cally configured in Image Recipes and their related Classes → Image Features

2. distributions Configuration Files can select which features they want to support → Distro Features

3. machine Configuration Files specifies the hardware functions that will be available for a given ma-
chine → Machine Features

28 Chapter 5. Terms, Concepts, Idioms

https://docs.yoctoproject.org/ref-manual/terms.html#term-Layer
https://docs.yoctoproject.org/overview-manual/concepts.html#layers
https://www.yoctoproject.org/software-overview/layers
https://layers.openembedded.org/layers
https://docs.yoctoproject.org/ref-manual/terms.html#term-Image
https://docs.yoctoproject.org/overview-manual/concepts.html#images
https://docs.yoctoproject.org/ref-manual/images.html
https://docs.yoctoproject.org/ref-manual/terms.html#term-Package
https://docs.yoctoproject.org/ref-manual/terms.html#term-Package-Groups
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-fetch
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-patch
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-compile
https://docs.yoctoproject.org/ref-manual/terms.html#term-Task
https://docs.yoctoproject.org/ref-manual/tasks.html
https://docs.yoctoproject.org/ref-manual/terms.html#term-Classes
https://docs.yoctoproject.org/overview-manual/concepts.html#classes
https://docs.yoctoproject.org/ref-manual/classes.html
https://docs.yoctoproject.org/ref-manual/terms.html#term-Recipe
https://docs.yoctoproject.org/overview-manual/concepts.html#recipes
https://docs.yoctoproject.org/ref-manual/terms.html#term-Append-Files
https://docs.yoctoproject.org/ref-manual/terms.html#term-Append-Files
https://docs.yoctoproject.org/ref-manual/terms.html#term-Configuration-File
https://docs.yoctoproject.org/overview-manual/concepts.html#configurations
https://docs.yoctoproject.org/ref-manual/features.html
https://docs.yoctoproject.org/ref-manual/features.html#ref-features-image
https://docs.yoctoproject.org/ref-manual/features.html#ref-features-distro
https://docs.yoctoproject.org/ref-manual/features.html#ref-features-machine

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

4. backward and inter-layer compatibility for special (historical) cases → Feature Backfilling

Figure 5.1: Yocto Build System Features and their interaction

Idioms

1. Build System: The build system specific to the Yocto Project based on the project Poky, which uses
BitBake as the Task executor.

2. Source Directory: Refers to the directory structure created as a result of creating a local copy of
the Poky and all other Git repositories as referred by the Git Repo manifest. It contains BitBake,
Documentation, Metadata and other files that all support the Yocto Project. Consequently, you must
have the Source Directory in place on your development system in order to do any development
using the Yocto Project. → Source Directory

3. Build Directory: This term refers to the area used by the Build System for downloads, builds and
deployments. → Build Directory

4. Cross-Development Toolchain: A collection of cross-compilers, linkers, debuggers, libraries and
utilities that run on one architecture and allow you to develop software for a different, or targeted,
architecture. → Cross-Development Toolchain

5. Board Support Package (BSP): A group of drivers, definitions, and other components that provide
support for a specific hardware configuration. → Board Support Package (BSP), or Yocto Project Board
Support Package Developer’s Guide and Yocto Project Linux Kernel Development Manual

29

https://docs.yoctoproject.org/ref-manual/features.html#ref-features-backfill
https://docs.yoctoproject.org/ref-manual/features.html
https://docs.yoctoproject.org/ref-manual/terms.html#term-Source-Directory
https://docs.yoctoproject.org/ref-manual/terms.html#term-Build-Directory
https://docs.yoctoproject.org/ref-manual/terms.html#term-Cross-Development-Toolchain
https://docs.yoctoproject.org/ref-manual/terms.html#term-Board-Support-Package-BSP
https://docs.yoctoproject.org/bsp-guide/index.html
https://docs.yoctoproject.org/bsp-guide/index.html
https://docs.yoctoproject.org/kernel-dev/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Conclusion

the following applies and is unavoidable

Git Repo: determines the code base line

Layers: are essential and able to overlay

Classes: inheritable but not extensible

Recipes: extensible but not inheritable

Features: determines the final product

30 Chapter 5. Terms, Concepts, Idioms

6
Git Repo Manifest

A product firmware stack will developed locally and pushed to different in-house or external repositories at
irregular intervals. A tool to unifies all that repositories as necessary, performs uploads and automates the
pull and sync process will be needed.

The repo tool and a meta Git repository calledmanifest or such as in our case platform repomake it possible
to get all the code needed to build your own Yocto source and build directory.

excerpts and quotes from https://source.android.com/setup/develop#repo — © 2008–2021 Google LLC.

Git

handle projects that are distributed over multiple Git repositories

Repo

unifies Git repositories, performs uploads to Gerrit, and automates the workflow

Gerrit

code review system for projects that use Git

31

https://source.android.com/setup/develop#repo

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

6.1 Platform Manifest

This section contains direct excerpts and quotes from publicly accessible documentation: Manifest For-
mat — © 2008–2021 Google LLC.

https://github.com/lipro-yocto/lpn-central-repo

<?xml version=”1.0” encoding=”UTF-8”?>
<manifest>

<default sync-j=”4” revision=”master”/>

<remote fetch=”https://git.yoctoproject.org/git” name=”yocto”/>
<remote fetch=”https://github.com/openembedded” name=”oe”/>
<remote fetch=”https://github.com/meta-qt5” name=”qt5”/>
<remote fetch=”https://github.com/lipro-yocto” name=”lpy”/>

<project remote=”yocto” name=”poky” path=”sources/poky”/>
<project remote=”yocto” name=”meta-mingw” path=”sources/yocto/meta-mingw”/>
<project remote=”oe” name=”meta-openembedded” path=”sources/openembedded”/>
<project remote=”qt5” name=”meta-qt5” path=”sources/qt/meta-qt5” />

<project remote=”lpy” name=”lpn-central” path=”sources/central”>
<copyfile dest=”setup-environment” src=”scripts/setup-environment”/>

</project>

</manifest>

→ https://gerrit.googlesource.com/git-repo/+/master/docs

Manifest Format, Configuration, Hooks

Element manifest

The root element of the file.

Element include

This element provides the capability of including another manifest file into the originating manifest. Normal
rules apply for the target manifest to include – it must be a usable manifest on its own.

Attribute name The name of the manifest file to include, specified relative to the manifest
repository’s root.

32 Chapter 6. Git Repo Manifest

https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md
https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md
https://github.com/lipro-yocto/lpn-central-repo
https://gerrit.googlesource.com/git-repo/+/master/docs
https://gerrit.googlesource.com/git-repo/+/master/docs/manifest-format.md
https://gerrit.googlesource.com/git-repo/+/master/docs/internal-fs-layout.md#dotconfig-layout
https://gerrit.googlesource.com/git-repo/+/master/docs/repo-hooks.md

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

Element default

At most one default element may be specified. Its remote and revision attributes are used when a project
element does not specify its own remote or revision attribute.

Attribute remote See project → remote. Name of a previously defined remote element. Project
elements lacking a remote attribute of their own will use this remote.

Attribute revision See remote → revision. Project elements lacking their own revision attribute
will use this revision.

Attribute sync-j Number of parallel jobs to use when synching.

Attribute sync-s Set to true to also sync sub-projects (Git submodules).

Element remote

One or more remote elements may be specified. Each remote element specifies a Git URL shared by one or
more projects and (optionally) the Gerrit review server those projects upload changes through.

Attribute name A short name unique to this manifest file. The name specified here is used as
the remote name in each project’s .git/config, and is therefore automatically available to
commands like git fetch, git remote, git pull and git push.

Attribute alias The alias, if specified, is used to override name to be set as the remote name
in each project’s .git/config. Its value can be duplicated while attribute name has to be
unique in the manifest file. This helps each project to be able to have same remote name
which actually points to different remote URL.

Attribute fetch The Git URL prefix for all projects which use this remote. Each project’s name
is appended to this prefix to form the actual URL used to clone the project.

Attribute pushurl The Git “push” URL prefix for all projects which use this remote. Each
project’s name is appended to this prefix to form the actual URL used to git push the
project. This attribute is optional; if not specified then git push will use the same URL as
the fetch attribute.

Attribute review Hostname of the Gerrit server where reviews are uploaded to by repo up-
load. This attribute is optional; if not specified then repo upload will not function.

Attribute revision Name of a Git branch or specific reference (e.g. master or refs/heads/
master, and also possible refs/tags/1.0.0). Tags and/or explicit SHA-1s should work in
theory, but have not been extensively tested. Remotes with their own revision will override
the default → revision.

6.1. Platform Manifest 33

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Element project

One or more project elements may be specified. Each element describes a single Git repository to be cloned
into the repo client workspace. Youmay specify Git submodules by creating a nested project. Git submodules
will be automatically recognized and inherit their parent’s attributes, but those may be overridden by an
explicitly specified project element.

Attribute name A unique name for this project. The project‘s name is appended onto its re-
mote’s fetch URL to generate the actual URL to configure the Git remote with. The URL gets
formed as:

${remote_fetch}/${project_name}.git

Attribute path An optional path relative to the top directory of the repo client where the Git
working directory for this project should be placed. If not supplied the project name is used.
If the project has a parent element, its path will be prefixed by the parent’s.

Attribute remote Name of a previously defined remote element. If not supplied the remote
given by the default element is used.

Attribute revision Name of the Git branch the manifest wants to track for this project. See
remote → revision. If not supplied the revision given by the remote element is used if appli-
cable, else the default element is used.

Attribute sync-s Set to true to also sync sub-projects (Git submodules).

Element copyfile

Zero or more copyfile elements may be specified as children of a project element. Each element describes
a source-destination-pair of files; the src file will be copied to the dest place during repo sync command.

Copying from paths outside of the project or to paths outside of the repo client is not allowed. Directories or
symlinks are not allowed. Intermediate paths must not be symlinks either.

Attribute src The source file; is project relative and must be a file.

Attribute dest The destination file; is relative to the top of the tree and must be a file. Parent
directories will be automatically created if missing.

Element linkfile

It’s just like copyfile and runs at the same time as copyfile but instead of copying it creates a symlink.

The symlink is created at dest (relative to the top of the tree) and points to the path specified by src which is
a path in the project. Parent directories of dest will be automatically created if missing. The symlink target
may be a file or directory, but it may not point outside of the repo client.

34 Chapter 6. Git Repo Manifest

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

6.2 Platform Pipeline

This section contains direct excerpts and quotes from publicly accessible documentation: Revision Control
of your Embedded Linux System — © 2019 Ville Baillie.

Figure 6.1: Revision Control of your Embedded Linux System using Git repo

Revision Control of your Embedded Linux System

Using Yocto you’ll need to juggle several repositories at once. You’ll have your “poky” repository (typically
you’ll get this from https://git.yoctoproject.org/git/poky), then you’ll have your OpenEmbedded layer (usu-
ally retrieved from https://github.com/openembedded/meta-openembedded.git).

In addition, you’ll also have your SoC and SoM specific layers, and then you’ll probably have your own project
specific layer. So you may have anywhere up to 10 or possibly more repositories to handle.

Earlier in this series, a short introduction to the tool named repo was given. This tool allows multiple git
repositories to be handled together as a cohesive whole. At its heart is the idea of a manifest, which is
simply a list of git repositories and commit IDs (or tags or branches), and how to arrange them on your
local filesystem. The repo comes in two parts: One is the repo launcher you download and install. It’s
a Python script that communicates with the second part and knows how to initialize a checkout and can

6.2. Platform Pipeline 35

https://medium.com/@villebaillie25/revision-control-of-your-embedded-linux-system-34bf4d5c7979
https://medium.com/@villebaillie25/revision-control-of-your-embedded-linux-system-34bf4d5c7979
https://git.yoctoproject.org/git/poky
https://github.com/openembedded/meta-openembedded.git

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

download the second part, the full repo tool included in a source code checkout. To install repo, e.g. from
the lipro-yocto setup:

mkdir -p ~/.local/bin
curl https://raw.githubusercontent.com/lipro-yocto/git-repo/lpn-launcher/repo > \

~/.local/bin/repo
chmod a+x ~/.local/bin/repo
sha1sum ~/.local/bin/repo

For repo launcher version 2.12.2.2021.2.20, the SHA-1 checksum for repo is
93cab6406f072e78874dac1d891427c84189f0b6.

Optionally verify the launcher matches the correct signature:

gpg --recv-key 5BA1FE49FB5F4F60C974D991579B34AFDE6AB439
curl https://raw.githubusercontent.com/lipro-yocto/git-repo/lpn-launcher/repo.asc | \

gpg --verify - ~/.local/bin/repo

Alternatively, of course, the original can also be downloaded and installed directly from Google.

Basic repo usage

You need to create a repository to hold your manifest file (I know another repository) is the last thing you
need. But this can be on your local machine if you wish, at least to begin with.

Once this is done, you should find a folder in which you wish to keep all your sources, and run the following,
e.g. from the lipro-yocto setup:

mkdir lpn-central-bsp
cd lpn-central-bsp
repo init --manifest-url=https://github.com/lipro-yocto/lpn-central-repo \

--manifest-branch=master --manifest-name=default.xml

This sets up the current directory as the working directory for this repo manifest. Now you can run:

repo sync

…which will fetch all the repositories into the local directory. If you want to see if everything is as it should
be (no changes in the repositories and branches with respect to their upstream brothers) you can run:

repo status

…and if you want to update everything to the manifest discarding all changes you can run

repo sync --detach

These tools should give you enough get starting and going with repo and Embedded Linux development.
The original project page has a more comprehensive command line documentation and should always be
consulted if there are any questions.

36 Chapter 6. Git Repo Manifest

https://source.android.com/setup/develop#installing-repo
https://source.android.com/setup/develop/repo

7
Build System

Figure 7.1: OpenEmbedded Build System Concepts as part of Yocto Build System Workflow

In general, the build’s workflow consists of several functional areas:

User Configuration Setup values you can use to control the build process.

Metadata Layers Various layers that provide software, machine, and distro metadata.

Source Files Upstream releases, local projects, and SCMS (Software Configuration Management
System).

Package Feeds Directories containing output packages (RPM, DEB or IPK), which are subse-
quently used in the construction of an image or Software Development Kit (SDK), produced
by the build system. These feeds can also be copied and shared using a web server or other

37

https://docs.yoctoproject.org/overview-manual/concepts.html#openembedded-build-system-concepts

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

means to facilitate extending or updating existing images on devices at runtime if runtime
package management is enabled.

BitBake Tool Processes under the control of BitBake. This block expands on how BitBake fetches
source, applies patches, completes compilation, analyzes output for package generation,
creates and tests packages, generates images, and generates cross-development tools.

Images Images produced by the build system workflow.

Application Development SDK Cross-development tools that are produced along with an im-
age or separately with BitBake.

7.1 Configuration Area

Figure 7.2: User Configuration as part of Yocto Build System Workflow

User configuration helps define the build. Through user configuration, you can tell BitBake the target archi-
tecture for which you are building the image, where to store downloaded source, and other build properties.
See User Configuration (page 45) for more details.

38 Chapter 7. Build System

https://docs.yoctoproject.org/overview-manual/concepts.html#user-configuration

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

7.2 Metadata Area

Figure 7.3: Metadata Layers as part of Yocto Build System Workflow

The previous area will be used to define BitBake’s global behavior. This area takes a closer look at the layers
the build system uses to further control the build. These layers provide Metadata for the software, machine,
and policies. See Metadata Layers (page 49) for more details.

7.2. Metadata Area 39

https://docs.yoctoproject.org/overview-manual/concepts.html#metadata-machine-configuration-and-policy-configuration

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

7.3 Source Area

Figure 7.4: Sources as part of Yocto Build System Workflow

In order for the OpenEmbedded build system to create an image or any target, it must be able to access
source files. The general workflow figure represents source files using the “Upstream Project Releases”,
“Local Projects”, and “SCMS (optional)” boxes. The figure representsmirrors, which also play a role in locating
source files, with the “Source Materials” box. See Source Files (page 61) for more details.

40 Chapter 7. Build System

https://docs.yoctoproject.org/overview-manual/concepts.html#sources

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

7.4 Package Area

Figure 7.5: Package Feeds as part of Yocto Build System Workflow

When the OpenEmbedded build system generates an image or an SDK, it gets the packages from a package
feed area located in the Build Directory. The general workflow figure shows this package feeds area in the
upper-right corner. See Package Feeds (page 65) for more details.

7.4. Package Area 41

https://docs.yoctoproject.org/overview-manual/concepts.html#package-feeds

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

7.5 BitBake Tool Area

Figure 7.6: BitBake Tool as part of Yocto WBuild System orkflow

The OpenEmbedded build system uses BitBake to produce images and Software Development Kit (SDK). You
can see from the general workflow figure, the BitBake area consists of several functional areas:

1. Source Fetching

2. Patching

3. Configuration, Compilation, and Staging

4. Package Splitting

5. Image Generation

6. SDK Generation

See BitBake Tool (page 67) for more details.

42 Chapter 7. Build System

https://docs.yoctoproject.org/overview-manual/concepts.html#bitbake-tool

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

7.6 Images Area

Figure 7.7: Images as part of Yocto Build System Workflow

The images produced by the build system are compressed forms of the root filesystem and are ready to boot
on a target device. You can see from the general workflow figure that BitBake output, in part, consists of
images. See Images (page 75) for more details.

7.6. Images Area 43

https://docs.yoctoproject.org/overview-manual/concepts.html#images

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

7.7 SDK Area

Figure 7.8: Application Development SDK as part of Yocto Build System Workflow

In the general workflow figure, the output labeled “Application Development SDK” represents an SDK (Soft-
ware Development Kit). The SDK generation process differs depending on whether you build an extensible
SDK (e.g. bitbake -c populate_sdk_ext imagename) or a standard SDK (e.g. bitbake -c popu-
late_sdk imagename). See Application Development SDK (page 77) for more details.

44 Chapter 7. Build System

https://docs.yoctoproject.org/overview-manual/concepts.html#application-development-sdk

8
User Configuration

This section contains direct excerpts and quotes from publicly accessible documentation: User Configura-
tion — © 2010–2021 The Yocto Project.

Figure 8.1: User Configuration with Details

BitBake needs some basic configuration files in order to complete a build. These files are *.conf files. The
minimally necessary ones reside as example files in the build/conf directory of the Source Directory. For
simplicity, this section and Figure 8.1 refers to the Source Directory as the Poky Directory.

The meta-poky layer inside Poky contains a conf directory that has example configuration files. These
example files are used as a basis for creating actual configuration files when you source oe-init-build-env,
which is the build environment script.

Sourcing the build environment script creates a Build Directory if one does not already exist. BitBake uses
the Build Directory for all its work during builds. The Build Directory has a conf directory that contains
default versions of your local.conf and bblayers.conf configuration files. These default configuration
files are created only if versions do not already exist in the Build Directory at the time you source the build
environment setup script.

45

https://docs.yoctoproject.org/overview-manual/concepts.html#user-configuration
https://docs.yoctoproject.org/overview-manual/concepts.html#user-configuration
https://docs.yoctoproject.org/overview-manual/concepts.html#user-configuration
https://docs.yoctoproject.org/ref-manual/structure.html#structure-core-script

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Attention: Because the Poky repository is fundamentally an aggregation of existing repositories, some
users might be familiar with running the oe-init-build-env script in the context of separate OpenEm-
bedded Core and BitBake repositories rather than a single Poky repository. This discussion assumes
the script is executed from within a cloned or unpacked version of Poky.

The conf/local.conf file provides many basic variables that define a build environment. Here is a list of
a few:

Target Machine Selection Controlled by the MACHINE variable.

Download Directory Controlled by the DL_DIR variable. Mostly set in conf/site.conf. →
Local Storage → Source Material (mirrored)

Shared State Directory Controlled by the SSTATE_DIR variable. Mostly set in conf/site.
conf. → Shared State Cache

Build Output Controlled by the TMPDIR variable.

Distribution Policy Controlled by the DISTRO variable.

Packaging Format Controlled by the PACKAGE_CLASSES variable.

SDK Target Architecture Controlled by the SDKMACHINE variable.

Extra Image Packages Controlled by the EXTRA_IMAGE_FEATURES variable.

Note: Configurations set in the conf/local.conf file can also be set in the conf/site.conf and
conf/auto.conf configuration files. Both files are not created by the environment initialization script (oe-
init-build-env). If you want the conf/site.conf file, you need to create that yourself. The conf/auto.
conf file is typically created by an autobuilder running on a CI (Continuous Integration)/CD (Continuous
Deployment / Delivery) environment.

The conf/bblayers.conf file tells BitBake what layers you want considered during the build. By default,
the layers listed in this file include layers minimally needed by the build system. However, you must
manually add any custom layers you have created. You can find more information on working with the
bblayers.conf file in the Enabling Your Layer section in the Yocto Project Development Tasks Manual.

When you launch your build with the bitbake target command, BitBake sorts out the configurations
to ultimately define your build environment. It is important to understand that the BitBake Tool (page 67)
reads the configuration files in a specific order: conf/site.conf, conf/auto.conf, and conf/local.
conf. And, the build system applies the normal assignment statement rules as described in the Syntax and
Operators chapter of the BitBake User Manual. Because the files are parsed in a specific order, variable
assignments for the same variable could be affected. For example, if the conf/auto.conf file and the
conf/local.conf set VARIABLE_1 to different values, because the build system parses conf/local.
conf after conf/auto.conf, VARIABLE_1 is assigned the value from the conf/local.conf file.

46 Chapter 8. User Configuration

https://docs.yoctoproject.org/ref-manual/structure.html#structure-core-script
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE
https://docs.yoctoproject.org/ref-manual/variables.html#term-DL_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-SSTATE_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-TMPDIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDKMACHINE
https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/structure.html#structure-core-script
https://docs.yoctoproject.org/ref-manual/structure.html#structure-core-script
https://docs.yoctoproject.org/dev-manual/common-tasks.html#enabling-your-layer
https://docs.yoctoproject.org/dev-manual/index.html
https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-metadata.html
https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-metadata.html
https://docs.yoctoproject.org/bitbake/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

8.1 bblayers.conf

https://github.com/lipro-yocto/lpn-central → meta-cedi/conf

CEDI_BBLAYERS_CONF_VERSION = ”1”

BBPATH = ”${TOPDIR}”
BSPDIR := ”${@os.path.abspath('##OEROOT##/../..')}”
BBFILES ?= ””

BBLAYERS = ” \
${BSPDIR}/sources/poky/meta \
${BSPDIR}/sources/poky/meta-poky \
${BSPDIR}/sources/poky/meta-yocto-bsp \
\
${BSPDIR}/sources/yocto/meta-mingw \
\
${BSPDIR}/sources/openembedded/meta-oe \
${BSPDIR}/sources/openembedded/meta-python \
${BSPDIR}/sources/openembedded/meta-initramfs \
${BSPDIR}/sources/openembedded/meta-filesystems \
${BSPDIR}/sources/openembedded/meta-networking \
${BSPDIR}/sources/openembedded/meta-multimedia \
\
${BSPDIR}/sources/qt/meta-qt5 \
\
${BSPDIR}/sources/central/meta \
${BSPDIR}/sources/central/meta-cedi \
${BSPDIR}/sources/central/meta-lpn-bsp \

”

The bblayers.conf file tells BitBake what layers you want considered during the build.

8.2 local.conf

https://github.com/lipro-yocto/lpn-central → meta-cedi/conf

The local.conf file provides many basic variables that define a build environment. Here is a list of a few:

Target Machine Selection: MACHINE ??= ”qemux86-64”

Target Distribution Selection: DISTRO ?= ”cedi”

Target Packaging Format: PACKAGE_CLASSES ?= ”package_rpm”

Download Directory: DL_DIR ?= ”${TOPDIR}/downloads”

Shared State Cache Directory: SSTATE_DIR ?= ”${TOPDIR}/sstate-cache”

Build Output: TMPDIR = ”${TOPDIR}/tmp”

Parallelism Options: BB_NUMBER_THREADS ?= ”4”

8.1. bblayers.conf 47

https://github.com/lipro-yocto/lpn-central
https://github.com/lipro-yocto/lpn-central

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Host SDK Machine Selection: SDKMACHINE ?= ”x86_64”

The setup-environment script have to use to generate the content of the local.conf file.

8.3 setup-environment

https://github.com/lipro-yocto/lpn-central → scripts

The setup-environment script provides many basic options that setup a build environment with the cor-
rect User Configuration. Here is a short synopsis:

DISTRO=”cedi” \
MACHINE=”helium” \
SDKMACHINE=”x86_64-mingw32” \
BUILD_DIR=”build-cedi-helium” \
source setup-environment

The setup-environment calls the oe-init-build-env script implicitly from the correct place in the
Poky Source Directory.

To get a detailed online help use:

source setup-environment --help

48 Chapter 8. User Configuration

https://github.com/lipro-yocto/lpn-central

9
Metadata Layers

This section contains direct excerpts and quotes from publicly accessible documentation: Metadata, Machine
Configuration, and Policy Configuration — © 2010–2021 The Yocto Project.

Figure 9.1: Metadata Layers with Details

In general, three types of layer input exists. You can see them below User Configuration box in Figure 7.1:

Metadata (.bb + Patches) Software Layers containing user-supplied recipe files, patches,
and append files. A good example of a software layer might be the meta-qt5 layer. This
layer is for version 5.0 of the popular Qt cross-platform application development framework
for desktop, embedded and mobile.

Policy Configuration Distribution Layers (i.e. Distro Layer in the following Figure 9.1) provid-

49

https://docs.yoctoproject.org/overview-manual/concepts.html#metadata-machine-configuration-and-policy-configuration
https://docs.yoctoproject.org/overview-manual/concepts.html#metadata-machine-configuration-and-policy-configuration
https://docs.yoctoproject.org/overview-manual/concepts.html#metadata-machine-configuration-and-policy-configuration
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qt5

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

ing top-level or general policies for the images or SDKs being built for a particular distribu-
tion. For example, in the Reference Embedded Distribution (Poky) the distro layer is the
meta-poky layer. Within the distro layer is a conf/distro directory that contains distro
configuration files (e.g. poky.conf that contain many policy configurations for the Poky
distribution).

Machine BSP Configuration Board Support Package Layers (i.e. BSP Layer in the following
Figure 9.1) providingmachine-specific configurations. This type of information is specific to a
particular target architecture. A good example of a BSP layer from the Reference Embedded
Distribution (Poky) is the meta-yocto-bsp layer.

In general, all layers have a similar structure. They all contain a licensing file (e.g. COPYING.MIT) if the
layer is to be distributed, a README file as good practice and especially if the layer is to be distributed, a
configuration directory, and recipe directories. You can learn about the general structure for layers used with
the Yocto Project in the Creating Your Own Layer section in the Yocto Project Development Tasks Manual.

Hint: BitBake uses the conf/bblayers.conf file, which is part of the User Configuration, to find what
layers it should be using as part of the build.

Software Layer

The software layer provides the Metadata for additional software packages used during the build. This
layer does not include Metadata that is specific to the distribution or the machine, which are found in their
respective layers.

This layer contains any recipes (.bb), append files (.bbappend), and patches, that your project needs.

Distro Layer

The distribution layer provides policy configurations for your distribution. Best practices dictate that you
isolate these types of configurations into their own layer. Settings you provide in conf/distro/distro.
conf override similar settings that BitBake finds in your conf/local.conf file in the Build Directory.

The following list provides some explanation and references for what you typically find in the distribution
layer:

classes Class files (.bbclass) hold common functionality that can be shared among recipes in
the distribution. When your recipes inherit a class, they take on the settings and functions
for that class. You can read more about class files in the Classes chapter of the Yocto
Project Reference Manual.

conf This area holds configuration files for the layer (conf/layer.conf), the distribution
(conf/distro/distro.conf), and any distribution-wide include files.

recipes-* Recipes (.bb) and append files (.bbappend) that affect common functionality across
the distribution. This area could include recipes and append files to add distribution-
specific configuration, initialization scripts, custom image recipes, and so forth. Examples of
recipes-* directories are recipes-core and recipes-extra. Hierarchy and contents

50 Chapter 9. Metadata Layers

https://docs.yoctoproject.org/overview-manual/yp-intro.html#reference-embedded-distribution-poky
https://layers.openembedded.org/layerindex/branch/master/layer/meta-poky
https://git.yoctoproject.org/cgit/cgit.cgi/meta-yocto/tree/meta-poky/conf/distro/poky.conf
https://docs.yoctoproject.org/overview-manual/yp-intro.html#reference-embedded-distribution-poky
https://docs.yoctoproject.org/overview-manual/yp-intro.html#reference-embedded-distribution-poky
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp
https://docs.yoctoproject.org/dev-manual/common-tasks.html#creating-your-own-layer
https://docs.yoctoproject.org/dev-manual/index.html
https://docs.yoctoproject.org/ref-manual/classes.html
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

within a recipes-* directory can vary. Generally, these directories contain recipe files (*.
bb), recipe append files (*.bbappend), directories that are distro-specific for configuration
files, and so forth.

BSP Layer

The BSP layer provides machine configurations that target specific hardware. Everything in this layer is
specific to the machine for which you are building the image or the SDK. A common structure or form is
defined for BSP layers. You can learn more about this structure in the Yocto Project Board Support Package
Developer’s Guide.

Attention: In order for a BSP layer to be considered compliant with the Yocto Project, it must meet
some structural requirements.

The BSP layer’s configuration directory contains configuration files for the machine (conf/machine/
machine.conf) and, of course, the layer (conf/layer.conf). The remainder of the layer is dedicated
to specific recipes by function: recipes-bsp, recipes-core, recipes-graphics, recipes-kernel,
and so forth. Metadata can exist for multiple form factors, graphics support systems, and so forth.

Note: While Figure 9.1 shows several recipes-* directories, not all these directories appear in all BSP
layers.

9.1 Meta Layer Types

Software Layers: Metadata .bb + Patches

user/vendor/community supplied recipe files, patches and append files

Distribution Layers: Policy Configuration

top-level or general policies for Images or SDKs being built

BSP Layers: Machine Configuration

specific to a particular target architecture

9.1. Meta Layer Types 51

https://docs.yoctoproject.org/bsp-guide/index.html
https://docs.yoctoproject.org/bsp-guide/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

9.2 Meta Layer Stack

Figure 9.2: Metadata Layer Priorities (BBFILE_PRIORITY_LayerName)

See Figure 6.1 for reflection to related origin.

9.3 Meta Layer Machines

https://github.com/lipro-yocto/lpn-central → meta-lpn-bsp/conf/machine

The meta-lpn-bsp layer provides machine configurations for all the specific evaluation hardware based
on QEMU or real target architecture. The following target machines are supported:

hydrogen: QEMU x86 machine based on qemux86

helium: QEMU x86-64 machine based on qemux86-64

9.3.1 hydrogen.conf

#@TYPE: Machine
#@NAME: QEMU x86 machine
#@DESCRIPTION: Machine configuration for running an x86 system on QEMU (based on␣
↪→qemux86).
#@MAINTAINER: Stephan Linz <linz@li-pro.net>

require conf/machine/include/qemux86.inc
require conf/machine/include/lpn-emu.inc

52 Chapter 9. Metadata Layers

https://github.com/lipro-yocto/lpn-central

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

qemux86.inc

derived from qemux86
require conf/machine/qemux86.conf
MACHINEOVERRIDES_prepend = ”qemux86:”

derived this machine back to qemux86 for the Linux kernel
KMACHINE = ”qemux86”

lpn-emu.inc

is a Li-Pro.Net emulated system
require conf/machine/include/lpn.inc
MACHINEOVERRIDES_append = ”:lpnemu”

lpn.inc

is a Li-Pro.Net system
MACHINEOVERRIDES_append = ”:lpn”

9.3.2 helium.conf

#@TYPE: Machine
#@NAME: QEMU x86-64 machine
#@DESCRIPTION: Machine configuration for running an x86-64 system on QEMU (based on␣
↪→qemux86-64).
#@MAINTAINER: Stephan Linz <linz@li-pro.net>

require conf/machine/include/qemux86-64.inc
require conf/machine/include/lpn-emu.inc

qemux86-64.inc

derived from qemux86-64
require conf/machine/qemux86-64.conf
MACHINEOVERRIDES_prepend = ”qemux86-64:”

remap derived machine back to qemux86-64 for the Linux kernel
KMACHINE = ”qemux86-64”

9.3. Meta Layer Machines 53

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

lpn-emu.inc

is a Li-Pro.Net emulated system
require conf/machine/include/lpn.inc
MACHINEOVERRIDES_append = ”:lpnemu”

lpn.inc

is a Li-Pro.Net system
MACHINEOVERRIDES_append = ”:lpn”

9.4 Meta Layer Distros

https://github.com/lipro-yocto/lpn-central → meta-cedi/conf/distro

The meta-cedi layer provides policy configurations for all the specific evaluation distributions based on
Poky. The following distributions are supported:

cedi: Central Distro (Li-Pro.Net Demonstration) based on poky

9.4.1 cedi.conf

require ${COREBASE}/meta-poky/conf/distro/poky.conf

DISTROOVERRIDES = ”poky:${@d.getVar('DISTRO') or ''}”

DISTRO = ”cedi”
DISTRO_NAME = ”Central Distro (Li-Pro.Net Demonstration)”
DISTRO_VERSION_append = ”+r1.0”
DISTRO_CODENAME_append = ”-cedi”
TARGET_VENDOR = ”-cedi”
SDK_VENDOR = ”-cedisdk”

MAINTAINER = ”Cedi <cedi@li-pro.net>”

LOCALCONF_VERSION = ”1”

Override poky pre-settings (remove).
POKY_DEFAULT_DISTRO_FEATURES = ””
POKY_DEFAULT_EXTRA_RDEPENDS = ””
POKY_DEFAULT_EXTRA_RRECOMMENDS = ””

Setup Cedi defaults.
CEDI_DEFAULT_DISTRO_FEATURES = ”largefile opengl ptest multiarch wayland vulkan”
CEDI_DEFAULT_EXTRA_RDEPENDS = ”packagegroup-core-boot”

(continues on next page)

54 Chapter 9. Metadata Layers

https://github.com/lipro-yocto/lpn-central

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

CEDI_DEFAULT_EXTRA_RRECOMMENDS = ”kernel-module-af-packet”

DISTRO_FEATURES = ”${DISTRO_FEATURES_DEFAULT} ${CEDI_DEFAULT_DISTRO_FEATURES}”
DISTRO_EXTRA_RDEPENDS += ” ${CEDI_DEFAULT_EXTRA_RDEPENDS}”
DISTRO_EXTRA_RRECOMMENDS += ” ${CEDI_DEFAULT_EXTRA_RRECOMMENDS}”

Use systemd for system initialization
DISTRO_FEATURES_append = ” systemd”
VIRTUAL-RUNTIME_init_manager = ”systemd”
VIRTUAL-RUNTIME_login_manager = ”shadow-base”
DISTRO_FEATURES_BACKFILL_CONSIDERED += ”sysvinit”
VIRTUAL-RUNTIME_initscripts = ”systemd-compat-units”

Add Cedi sanity bbclass.
INHERIT += ”cedi-sanity”

9.5 Meta Layer Images

https://github.com/lipro-yocto/lpn-central → meta/recipes-core/images

The meta (central core) layer provides recipes and classes for all the specific evaluation and demonstra-
tion images and package groups based on the customized image class central-image.bbclass. The
following images are supported:

central-image-minimal: A small image just capable of allowing an Central device to boot.

central-dev-image: A developer image just capable of allowing an Central device to boot.

central-debug-image: A debugging image just capable of allowing an Central device to boot.

central-image: A product image capable of allowing an Central device to boot and provides full feature
support.

9.5.1 central-image.bb

require central-image-base.bb

SUMMARY = ”A product image capable of allowing an Central \
device to boot and provides full feature support.”

DESCRIPTION = ”A product image capable of allowing an Central \
device to boot in graphical mode and provides full feature support.”

LICENSE = ”MIT”
PR = ”r0”

IMAGE_FEATURES += ” \
${@bb.utils.contains('DISTRO_FEATURES', 'x11', 'x11-base', '', d)} \

(continues on next page)

9.5. Meta Layer Images 55

https://github.com/lipro-yocto/lpn-central

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

(continued from previous page)

”

inherit central-image

central-image-base.bb

SUMMARY = ”A console-only image that fully supports the target device \
hardware provided by Central.”

LICENSE = ”MIT”
PR = ”r0”

IMAGE_FEATURES += ” \
package-management \
splash \

”

inherit central-image

9.5.2 central-image.bbclass

Common code for generating Central reference images

LIC_FILES_CHKSUM = ”\
file://${CENTRALCOREBASE}/LICENSE;md5=4d183b8707e22082e5a8c5ad268e5149 \

”

- qt5-sdk - Qt5/X11 SDK and demo applications
- tools-cross - tools usable for basic cross development
FEATURE_PACKAGES_qt5-sdk = ”\

packagegroup-qt5-toolchain-target \
packagegroup-qt5-qtcreator-debug \

”
FEATURE_PACKAGES_tools-cross = ””
Provides the Central specific features 'qt5-sdk' and 'tools-cross'.

CENTRAL_IMAGE_BASE_INSTALL = '\
packagegroup-central-boot \
packagegroup-base-central \
\
${@bb.utils.contains(”IMAGE_FEATURES”, ”tools-cross”, \

”packagegroup-central-tools-cross”, ””, d)} \
${@bb.utils.contains(”IMAGE_FEATURES”, ”tools-debug”, \

”packagegroup-central-tools-debug”, ””, d)} \
${@bb.utils.contains(”IMAGE_FEATURES”, ”tools-profile”, \

”packagegroup-central-tools-profile”, ””, d)} \
(continues on next page)

56 Chapter 9. Metadata Layers

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

${@bb.utils.contains(”IMAGE_FEATURES”, ”tools-testapps”, \
”packagegroup-central-tools-testapps”, ””, d)} \

${@bb.utils.contains(”IMAGE_FEATURES”, ”tools-sdk”, \
”packagegroup-central-sdk”, ””, d)} \

\
${CENTRAL_IMAGE_EXTRA_INSTALL} \
'

CENTRAL_IMAGE_EXTRA_INSTALL ?= ””

CORE_IMAGE_EXTRA_INSTALL += ”${CENTRAL_IMAGE_BASE_INSTALL}”

inherit core-image central-image-version

9.5.3 central-image-version.bbclass

Common code for generating Central version file

LIC_FILES_CHKSUM = ”\
file://${CENTRALCOREBASE}/LICENSE;md5=4d183b8707e22082e5a8c5ad268e5149 \

”

CENTRAL_VERSION_FILE = ”${IMAGE_ROOTFS}${sysconfdir}/central_version”

write_central_version() {
cat > ${CENTRAL_VERSION_FILE} <<EOF

[build information]
vendor-id=LPN
manufacturer-name=Li-Pro.Net
device-variant=${MACHINE}
purpose=${IMAGE_BASENAME}
feature=${IMAGE_FEATURES}
build-number=${BUILD_NUMBER}
EOF
}

ROOTFS_POSTPROCESS_COMMAND += ”write_central_version;”

9.5. Meta Layer Images 57

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

9.5.4 packagegroup-central-boot.bb

SUMMMARY = ”Central Minimal Boot Requirements”
DESCRIPTION = ”The minimal set of packages required to boot a Central system”
LICENSE = ”MIT”
PR = ”r0”

For backwards compatibility after rename
RPROVIDES_packagegroup-central-boot = ”packagegroup-boot-central”
RREPLACES_packagegroup-central-boot = ”packagegroup-boot-central”
RCONFLICTS_packagegroup-central-boot = ”packagegroup-boot-central”

packages which content depend on MACHINE_FEATURES need to be MACHINE_ARCH
PACKAGE_ARCH = ”${MACHINE_ARCH}”

inherit packagegroup

Set by the machine configuration with packages essential
for Central device bootup.
MACHINE_ESSENTIAL_EXTRA_CENTRAL_RDEPENDS ?= ””
MACHINE_ESSENTIAL_EXTRA_CENTRAL_RRECOMMENDS ?= ””

RDEPENDS_${PN} = ” \
${MACHINE_ESSENTIAL_EXTRA_CENTRAL_RDEPENDS} \

”

RRECOMMENDS_${PN} = ” \
${MACHINE_ESSENTIAL_EXTRA_CENTRAL_RRECOMMENDS} \

”

9.5.5 packagegroup-central-tools-testapps.bb

SUMMMARY = ”Central Testing tools/applications”
DESCRIPTION = ”The testing set of packages required for a Central system”
LICENSE = ”MIT”
PR = ”r0”

inherit packagegroup

Event device test tools
EVTOOLS = ”evtest”

Simple memmory access tools
MEMTOOLS = ”devmem2 libuio”

Simple serial bus tools
SERBUSTOOLS = ”i2c-tools spitools”

(continues on next page)

58 Chapter 9. Metadata Layers

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

Requires Serial to work
USE_SERIAL = ”picocom serial-forward”

RDEPENDS_${PN} = ” \
${EVTOOLS} \
${MEMTOOLS} \
${SERBUSTOOLS} \
${@bb.utils.contains('MACHINE_FEATURES', 'serial', '${USE_SERIAL}', '',d)} \

”

RRECOMMENDS_${PN} = ” \
”

9.5. Meta Layer Images 59

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

60 Chapter 9. Metadata Layers

10
Source Files

This section contains direct excerpts and quotes from publicly accessible documentation: Sources — ©
2010–2021 The Yocto Project.

Figure 10.1: Sources with Details

The general workflow in Figure 7.1 represents source files using the Upstream Project Releases, Local
Projects, and SCMs (optional) boxes. The figure represents mirrors, which also play a role in locating source
files, with the Source Material box.

BitBake uses the SRC_URI variable to point to source files regardless of their location. Each recipe must
have a SRC_URI variable that points to the source.

Another area that plays a significant role in where source files come from is pointed to by the DL_DIR

61

https://docs.yoctoproject.org/overview-manual/concepts.html#sources
https://docs.yoctoproject.org/overview-manual/concepts.html#sources
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/ref-manual/variables.html#term-DL_DIR

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

variable. This area is a cache that can hold previously downloaded source. Judicious use of a DL_DIR
directory can save the build system a trip across the Internet when looking for files. A good method for
using a download directory is to have DL_DIR point to an area outside of your Build Directory. Doing so
allows you to safely delete the Build Directory if needed without fear of removing any downloaded source
file.

Tip: The method by which source files are ultimately organized is a function of the project. For example,
for released software, projects tend to use tarballs or other archived files that can capture the state of a
release guaranteeing that it is statically represented. On the other hand, for a project that is more dynamic
or experimental in nature, a project might keep source files in a repository controlled by a Software Config-
uration Management System (SCMS) such as Git. Pulling source from a repository allows you to control the
point in the repository (the revision) from which you want to build software. Finally, a combination of the
two might exist, which would give the consumer a choice when deciding where to get source files.

Upstream Project Releases

Upstream Project Releases exist anywhere in the form of an archived file (e.g. tarball or zip file). These files
correspond to individual recipes. For example, the figure uses specific releases each for BusyBox, Qt, and
D-Bus. An archive file can be for any released product that can be built using a recipe.

Local Projects

Local Projects are custom bits of software the user provides. These bits reside somewhere local to a project –
 perhaps a directory into which the user checks in items (e.g. a local directory containing a development
source tree used by the group).

The canonical method through which to include a local project is to use the externalsrc.bbclass class to
include that local project. You use either the local.conf or a recipe’s append file to override or set the
recipe to point to the local directory on your disk to pull in the whole source tree.

Source Control Managers (Optional)

Another place from which the build system can get source files is with fetchers employing various Soft-
ware Configuration Management System such as Git or Subversion. In such cases, a repository is cloned or
checked out. The do_fetch task inside BitBake uses the SRC_URI variable and the argument’s prefix to
determine the correct fetcher module.

When fetching a repository, BitBake uses the SRCREV variable to determine the specific revision from
which to build.

62 Chapter 10. Source Files

https://docs.yoctoproject.org/ref-manual/classes.html#ref-classes-externalsrc
https://docs.yoctoproject.org/bitbake/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-fetch
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRCREV

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

Source Mirror(s)

Two kinds of mirrors exist:

pre-mirrors The PREMIRRORS variables point to this. BitBake checks pre-mirrors before look-
ing upstream for any source files. Pre-mirrors are appropriate when you have a shared di-
rectory that is not a directory defined by the DL_DIR variable. A Pre-mirror typically points
to a shared directory that is local to your organization.

regular mirrors The MIRRORS variables point to this. Regular mirrors can be any site across
the Internet that is used as an alternative location for source code should the primary site
not be functioning for some reason or another.

10.1 Upstream Project Releases

(almost all recipes)

• exist anywhere in the form of an archived file (e.g. tarball or ZIP file)

• correspond to individual recipes, PN and PV match with a upstream archive file

• archive file can be for any released product that can be built using a recipe

Example

The tslib_1.11.bb recipe points to the following XZ compressed tarball file:
https://github.com/kergoth/tslib/releases/download/1.11/tslib-1.11.tar.xz

10.2 Local Projects

(no preference for this)

• custom bits of software the user provides

• these bits reside somewhere local to a project; perhaps a directory into which the user checks in items

• use the externalsrc.bbclass class in recipes to include a local projects

Note

Community does not use local projects! Never seen!

10.3 Source Code Manager (optional)

(almost vendor or product recipes)

• get source files through an SCMS such as Git or Subversion or Mercurial

• repository is cloned and/or checked out

10.1. Upstream Project Releases 63

https://docs.yoctoproject.org/ref-manual/variables.html#term-PREMIRRORS
https://docs.yoctoproject.org/ref-manual/variables.html#term-DL_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-MIRRORS
https://docs.yoctoproject.org/ref-manual/variables.html#term-PN
https://docs.yoctoproject.org/ref-manual/variables.html#term-PV
https://github.com/kergoth/tslib/releases/download/1.11/tslib-1.11.tar.xz
https://docs.yoctoproject.org/ref-manual/classes.html#ref-classes-externalsrc

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Example

The meta/conf/layer.conf file may tells BitBake how to reach special (perhaps hidden) Git, Subversion,
or Mercurial servers:

CENTRAL_GIT ?= ”git://10.20.30.40/services/git”
CENTRAL_SVN ?= ”svn://10.20.30.40/services/svn”
CENTRAL_HG ?= ”hg://10.20.30.40/services/hg”

10.4 Source Mirror(s)

(almost all recipes by policy)

The meta-poky/conf/distro/poky.conf file as required by the meta-cedi/conf/distro/cedi.
conf file provides the two kinds of mirrors:

PREMIRRORS: the pre-mirrors

check before looking Upstream Project Releases

MIRRORS: the regular mirrors

alternative location should the Upstream Project Releases not available

64 Chapter 10. Source Files

11
Package Feeds

This section contains direct excerpts and quotes from publicly accessible documentation: Package Feeds —
 © 2010–2021 The Yocto Project.

Figure 11.1: Package Feeds with Details

Package feeds are an intermediary step in the build process. The OpenEmbedded build system provides
classes to generate different package types, and you specify which classes to enable through the PACK-
AGE_CLASSES variable. Before placing the packages into package feeds, the build process validates them
with generated output quality assurance (QA) checks through the insane.bbclass class.

The package feed area resides in the Build Directory. The directory the build system uses to temporarily
store packages is determined by a combination of variables and the particular package manager in use. See

65

https://docs.yoctoproject.org/overview-manual/concepts.html#package-feeds
https://docs.yoctoproject.org/overview-manual/concepts.html#package-feeds
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/classes.html#ref-classes-insane

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

the Package Feeds box in Figure 11.1 and note the information to the right of that area. In particular, the
following defines where package files are kept:

• DEPLOY_DIR: Defined as tmp/deploy in the Build Directory – the Deploy Directory.

• DEPLOY_DIR_*: Depending on the package manager used, the package type sub-folder. Given
RPM, IPK, or DEB packaging and tarball creation, the DEPLOY_DIR_RPM, DEPLOY_DIR_IPK, DE-
PLOY_DIR_DEB, or DEPLOY_DIR_TAR, variables are used, respectively.

• PACKAGE_ARCH: Defines architecture-specific sub-folders. For example, packages could exist for the
i586 or qemux86 architectures.

Hint: Mostly all that variables set to default values in the BitBake default configuration file conf/bitbake.
conf that residence inside the Source Directory.

BitBake uses the do_package_write_* tasks to generate packages and place them into the pack-
age holding area (e.g. do_package_write_ipk for IPK packages). See the do_package_write_deb,
do_package_write_ipk, do_package_write_rpm, and do_package_write_tar sections in the Yocto Project
Reference Manual for additional information. As an example, consider a scenario where an IPK packag-
ing manager is being used and package architecture support for both i586 and qemux86 exist. Packages
for the i586 architecture are placed in build/tmp/deploy/ipk/i586, while packages for the qemux86
architecture are placed in build/tmp/deploy/ipk/qemux86.

66 Chapter 11. Package Feeds

https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_RPM
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_IPK
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_DEB
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_DEB
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_TAR
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_ARCH
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-deb
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-ipk
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-deb
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-ipk
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-rpm
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-tar
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html

12
BitBake Tool

This section contains direct excerpts and quotes from publicly accessible documentation: BitBake Tool —
 © 2010–2021 The Yocto Project.

The OpenEmbedded build system uses BitBake to produce images and Software Development Kits (SDKs).
You can see from Figure 7.1, the box BitBake Tool Area in the middle consists of several functional stages:

http://git.yoctoproject.org/cgit/cgit.cgi/poky → meta/classes/*.bbclass

1. Source Fetching tasks: do_fetch → do_unpack

2. Patch Application tasks: do_patch

3. Configure / Compile / Install tasks: do_configure → do_compile → do_install

4. Analysis / Splitting Packages tasks: do_package/data → do_package_write_* →
do_populate_sysroot

5. Image Generation tasks: do_rootfs → do_image/_complete

6. SDK Generation tasks: do_populate_sdk/_ext

Hint: Separate documentation exists for the BitBake tool. See the BitBake User Manual for reference
material on BitBake.

12.1 Inherit

tasks by classes: cmake base package/group image populate_sdk_base
do_fetch, do_unpack X X
do_patch X X
do_configure,
do_compile, do_install

X X

do_package/data,
do_package_write_*,
do_populate_sysroot

X X

continues on next page

67

https://docs.yoctoproject.org/overview-manual/concepts.html#bitbake-tool
https://docs.yoctoproject.org/ref-manual/terms.html#term-BitBake
http://git.yoctoproject.org/cgit/cgit.cgi/poky
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-fetch
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-unpack
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-patch
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-configure
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-compile
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-install
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-packagedata
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package-write-deb
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-populate-sysroot
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-rootfs
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-image
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-image-complete
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-populate-sdk
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-populate-sdk-ext
https://docs.yoctoproject.org/overview-manual/concepts.html#bitbake
https://docs.yoctoproject.org/bitbake/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Table 12.1 – continued from previous page
tasks by classes: cmake base package/group image populate_sdk_base
do_rootfs,
do_image/_complete

X

populate_sdk/_ext X

12.2 Fetching

Figure 12.1: Source Fetching with Details

The first stages of building a recipe are to fetch and unpack the source code. The do_fetch and
do_unpack tasks fetch the source files and unpack them into the Build Directory. BitBake uses the
SRC_URI variable to point to source files regardless of their location.

68 Chapter 12. BitBake Tool

https://docs.yoctoproject.org/overview-manual/concepts.html#source-fetching
https://docs.yoctoproject.org/overview-manual/concepts.html#source-fetching
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-fetch
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-unpack
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

12.2.1 Fetching in Recipe

https://github.com/lipro-yocto/meta-lpn-apps (dummy, not yet)

The meta-lpn-apps layer may provides private (closed) recipes. The following related SRC_URI may
being used:

lib-utility_hg.bb: ”${CENTRAL_HG};module=lib_utility;branch=default;rev=${SRCREV};
protocol=ssh”

lib-crypto_hg.bb: ”${CENTRAL_HG};module=lib_crypto;branch=default;rev=${SRCREV};
protocol=ssh”

app-mcu-ctrl_hg.bb: ”${CENTRAL_HG};module=app_mcu_ctrl;branch=default;rev=${SRCREV};
protocol=ssh”

boost_1.75.0.bb: ”https://dl.bintray.com/boostorg/release/${PV}/source/${BOOST_P}.
tar.bz2”

For private recipes: SRCREV is set to SRCREV = ”default” and CENTRAL_HG should comes from e.g.
meta/conf/layer.conf.

12.3 Patching

Figure 12.2: Patching with Details

12.3. Patching 69

https://github.com/lipro-yocto/meta-lpn-apps
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRCREV
https://docs.yoctoproject.org/overview-manual/concepts.html#patching

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Once source code is fetched and unpacked, BitBake locates patch files and applies them to the source
files. The do_patch task processes recipes by using the SRC_URI variable to locate applicable patch
files. BitBake finds and applies multiple patches for a single recipe.

12.3.1 Patching in Recipe

http://git.yoctoproject.org/cgit/cgit.cgi/poky

http://cgit.openembedded.org/meta-openembedded

The poky/meta and meta-openembedded/meta-oe layer provides support recipes. The following related
SRC_URI being used:

boost_1.75.0.bb: SRC_URI += ”file://boost-CVE-2012-2677.patch ...”

opencv_4.5.0.bb: SRC_URI = ”git://github.com/opencv/opencv.git;name=opencv ... file:/
/download.patch ...”

Files in the SRC_URI list variable with the .patch or .diff extension are automatically identified as a
patch and applied if present beside the recipe.

12.4 Compilation

Figure 12.3: Configuration, Compilation, and Staging with Details

70 Chapter 12. BitBake Tool

https://docs.yoctoproject.org/overview-manual/concepts.html#patching
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-patch
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
http://git.yoctoproject.org/cgit/cgit.cgi/poky
http://cgit.openembedded.org/meta-openembedded
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://docs.yoctoproject.org/overview-manual/concepts.html#configuration-compilation-and-staging

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

After source code is patched, BitBake executes tasks that configure and compile the source code. This
step consists of three tasks: do_configure, do_compile and do_install. It starts at the earliest after all
dependencies from the DEPENDS variable in the recipe have been resolved.

12.4.1 Compilation in Recipe

https://github.com/lipro-yocto/meta-lpn-apps (dummy, not yet)

The meta-lpn-apps layer may provides private (closed) recipes. The following related DEPENDS may
being used:

lib-utility_hg.bb: ”boost”

lib-crypto_hg.bb: ”boost opencv”

app-mcu-ctrl_hg.bb: ”boost opencv qtbase qtsvg lib-utility lib-crypto”

boost_1.75.0.bb: ”boost-build-native zlib bzip2”

opencv_4.5.0.bb: ”libtool swig-native bzip2 zlib glib-2.0 libwebp”

For the application: RDEPENDS may be set to additional dependent package names that have to be in-
stalled later into targets’ runtime environment, e.g. RDEPENDS = ”app-observer-daemon”.

12.5 Packaging

Figure 12.4: Package Splitting with Details

12.5. Packaging 71

https://docs.yoctoproject.org/overview-manual/concepts.html#configuration-compilation-and-staging
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-configure
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-compile
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-install
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPENDS
https://github.com/lipro-yocto/meta-lpn-apps
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://docs.yoctoproject.org/overview-manual/concepts.html#package-splitting

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

After compilation, the build system analyzes the results and splits the output into packages. The
do_package and do_packagedata tasks combine to analyze the files found in the installation directory:
debugging symbols, looking at shared library dependencies and relationships of RDEPENDS in the recipe.

12.5.1 Packaging in Recipe

https://github.com/lipro-yocto/meta-lpn-apps (dummy, not yet)

The meta-lpn-apps layer may provides private (closed) recipes. The following related RDEPENDS may
being used:

app-mcu-ctrl: ”i2c-tools”

packagegroup-lpn-apps-toolchain-target: ”boost-staticdev opencv-staticdev lib-utility-
staticdev lib-crypto-staticdev”

The following related RDEPENDS may being used as policy; mostly controlled by common Image Features,
e.g. IMAGE_FEATURES += ”tools-testapps”:

packagegroup-central-tools-testapps: ”devregs spitools v4l-utils”

hostapd_%: ”lpn-mcu-ssid”

12.6 Image Generation

Figure 12.5: Image Generation with Details 1/2

72 Chapter 12. BitBake Tool

https://docs.yoctoproject.org/overview-manual/concepts.html#package-splitting
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-package
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-packagedata
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://github.com/lipro-yocto/meta-lpn-apps
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://docs.yoctoproject.org/overview-manual/concepts.html#image-generation

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

Once packages are split and stored in the Package Feeds, the build system uses BitBake to generate the
root filesystem image. The do_rootfs task creates the root filesystem for an image.

Figure 12.6: Image Generation with Details 2/2

The final stages of the do_rootfs task handle post processing, includes creation of a manifest file and
optimizations. After this, processing begins on the image through the do_image task and dynamically
created tasks as needed by the image types; ends with do_image_complete.

12.6. Image Generation 73

https://docs.yoctoproject.org/overview-manual/concepts.html#image-generation
https://docs.yoctoproject.org/overview-manual/concepts.html#image-generation
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-rootfs
https://docs.yoctoproject.org/overview-manual/concepts.html#image-generation
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-rootfs
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-image
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-image-complete

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

12.7 SDK Generation

Figure 12.7: SDK Generation with Details

The build system uses BitBake to generate the Software Development Kit (SDK) installer script for both
the Standard SDK (do_populate_sdk) and Extensible SDK (do_populate_sdk_ext). Like image generation,
the SDK script process consists of several stages and depends on many variables.

74 Chapter 12. BitBake Tool

https://docs.yoctoproject.org/overview-manual/concepts.html#sdk-generation
https://docs.yoctoproject.org/overview-manual/concepts.html#sdk-generation
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-populate-sdk
https://docs.yoctoproject.org/ref-manual/tasks.html#ref-tasks-populate-sdk-ext

13
Images

This section contains direct excerpts and quotes from publicly accessible documentation: Images — ©
2010–2021 The Yocto Project.

Figure 13.1: Images with Details

The images produced by the build system are compressed forms of the root filesystem and are ready to boot
on a target device. You can see from Figure 7.1 that BitBake output, in part, consists of image artifacts.

Hint: For a list of example images that the Yocto Project provides, see the Images chapter in the Yocto
Project Reference Manual.

75

https://docs.yoctoproject.org/overview-manual/concepts.html#images
https://docs.yoctoproject.org/overview-manual/concepts.html#images
https://docs.yoctoproject.org/ref-manual/images.html
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

The build process writes images out to the Build Directory inside the tmp/deploy/images/machine/
folder as shown in Figure 13.1. This folder contains any files expected to be loaded on the target device.
The DEPLOY_DIR variable points to the Deploy Directory, while the DEPLOY_DIR_IMAGE variable points
to the appropriate directory containing images for the current configuration.

kernel-image A kernel binary file. The KERNEL_IMAGETYPE variable determines the naming
scheme for the kernel image file. Depending on this variable, the file could begin with a
variety of naming strings. The deploy/images/machine directory can contain multiple
image files for the machine.

root-filesystem-image Root filesystems for the target device (e.g. *.ext3 or *.bz2 files).
The IMAGE_FSTYPES variable determines the root filesystem image type. The deploy/
images/machine directory can contain multiple root filesystems for the machine.

kernel-modules Tarballs that contain all the modules built for the kernel. Kernel module tarballs
exist for legacy purposes and can be suppressed by setting the MODULE_TARBALL_DEPLOY
variable to 0. The deploy/images/machine directory can contain multiple kernel module
tarballs for the machine.

bootloaders If applicable to the target machine, bootloaders supporting the image. The
deploy/images/machine directory can contain multiple bootloaders for the machine.

symlinks The deploy/images/machine folder contains a symbolic link that points to the most
recently built file for each machine. These links might be useful for external scripts that need
to obtain the latest version of each file.

76 Chapter 13. Images

https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR_IMAGE
https://docs.yoctoproject.org/ref-manual/variables.html#term-KERNEL_IMAGETYPE
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FSTYPES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MODULE_TARBALL_DEPLOY

14
Application Development SDK

This section contains direct excerpts and quotes from publicly accessible documentation: Application De-
velopment SDK — © 2010–2021 The Yocto Project.

Figure 14.1: Application Development SDK with Details

In Figure 7.1, the output labeled Application Development SDK represents an SDK. The SDK generation
process differs depending on whether you build an Extensible SDK (e.g. bitbake -c populate_sdk_ext
imagename) or a Standard SDK (e.g. bitbake -c populate_sdk imagename).

Hint:

• The Yocto Project supports several methods by which you can set up this cross-development environ-

77

https://docs.yoctoproject.org/overview-manual/concepts.html#application-development-sdk
https://docs.yoctoproject.org/overview-manual/concepts.html#application-development-sdk
https://docs.yoctoproject.org/overview-manual/concepts.html#application-development-sdk

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

ment. These methods include downloading pre-built SDK installers (e.g. from a tool vendor) or building
and installing your own SDK installer with the help of the Yocto Project.

• For background information on cross-development toolchains in the Yocto Project development envi-
ronment, see the Cross-Development Toolchain Generation section as part of the BitBake Tool Area.

• For information on setting up a cross-development environment, see the Yocto Project Application De-
velopment and the Extensible Software Development Kit (eSDK) manual.

The specific form of this output is a set of files that includes a self-extracting SDK installer (*.sh), host and
target manifest files, and files used for SDK testing. When the SDK installer file is run, it installs the SDK.
The SDK consists of a cross-development toolchain, a set of libraries and headers, and an SDK environment
setup script. Running this installer essentially sets up your cross-development environment. You can think
of the cross-toolchain as the host part because it runs on the SDK machine. You can think of the libraries
and headers as the target part because they are built for the target hardware. The environment setup script
is added so that you can initialize the environment before using the tools.

Two different SDK types

All the output files for an SDK are written to the deploy/sdk folder inside the Build Directory as shown in
Figure 14.1. Depending on the type of SDK, several variables exist that help configure these files. For a
side-by-side comparison of main features supported for an Extensible SDK as compared to a Standard SDK,
see the Introduction chapter in the Yocto Project Application Development and the Extensible Software
Development Kit (eSDK).

Table 14.1: Features summary for the two SDK types
Feature Standard SDK Extensible SDK
Toolchain Yes Yes1

Debugger Yes Yes1

Size 100+ ㎆ 1+ ㎇ (or 300+ ㎆ for minimal
w/toolchain)

devtool No Yes
Build Images No Yes
Updateable No Yes
Managed Sysroot2 No Yes
Installed Packages No3 Yes4

Construction Packages Shared State

Extensible SDK contains the toolchain and debugger if SDK_EXT_TYPE is full or SDK_INCLUDE_TOOLCHAIN is 1, which is the
default.
Sysroot is managed through the use of the devtool command. Thus, it is less likely that you will corrupt your SDK sysroot when
you try to add additional libraries.
You can add runtime package management to the Standard SDK but it is not supported by default.
You must build and make the Shared State Cache available to Extensible SDK users for packages you want to enable users to
install.

78 Chapter 14. Application Development SDK

https://docs.yoctoproject.org/overview-manual/concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/sdk-manual/intro.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/ref-manual/devtool-reference.html
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_EXT_TYPE
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_INCLUDE_TOOLCHAIN

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

Extensible SDK

bitbake -c populate_sdk_ext imagename

The Yocto Project Extensible SDK (eSDK) has tools that allow you to easily add new applications and libraries
to an image, modify the source of an existing component and test changes on the target hardware. The main
benefit over the Standard SDK is improved teamworkflow due to tighter integration with the OpenEmbedded
build system and have access to developer tools. For a detailed description see the Using the Extensible
SDK chapter in the Yocto Project Application Development and the Extensible Software Development Kit
(eSDK). News about development can read on the Yocto Project Wiki: Extensible SDK.

The following list shows the variables associated with an Extensible SDK:

• DEPLOY_DIR: Points to the Deploy Directory inside the Build Directory.

• SDK_EXT_TYPE: Controls whether or not shared state artifacts are copied into the Extensible SDK.
By default, all required shared state artifacts are copied into the SDK.

• SDK_INCLUDE_PKGDATA: Specifies whether or not package data is included in the Extensible SDK for
all recipes in the world target.

• SDK_INCLUDE_TOOLCHAIN: Specifies whether or not the toolchain is included when building the
Extensible SDK.

• SDK_LOCAL_CONF_WHITELIST: A list of variables allowed through from the build system configuration
into the Extensible SDK configuration.

• SDK_LOCAL_CONF_BLACKLIST: A list of variables not allowed through from the build system config-
uration into the Extensible SDK configuration.

• SDK_INHERIT_BLACKLIST: A list of classes to remove from the INHERIT value globally within the
Extensible SDK configuration.

See also:

• Yocto Project Wiki: Application Development with Extensible SDK

• Yocto Project Wiki: Extensible SDK

Standard SDK

bitbake -c populate_sdk imagename

The Standard SDK provides a cross-development toolchain and libraries tailored to the contents of a specific
image. You would use the Standard SDK if you want a more traditional toolchain experience as compared to
the Extensible SDK. For a detailed description see the Using the Standard SDK chapter in the Yocto Project
Application Development and the Extensible Software Development Kit (eSDK). Some use case scenarios
can read on the Yocto Project Wiki: SDK Generator.

This next list, shows the variables associated with a Standard SDK:

• DEPLOY_DIR: Points to the deploy directory.

• SDKMACHINE: Specifies the architecture of the machine on which the cross-development tools are
run to create packages for the target hardware.

79

https://docs.yoctoproject.org/sdk-manual/extensible.html
https://docs.yoctoproject.org/sdk-manual/extensible.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://wiki.yoctoproject.org/wiki/Extensible SDK
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_EXT_TYPE
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_INCLUDE_PKGDATA
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_INCLUDE_TOOLCHAIN
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_LOCAL_CONF_WHITELIST
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_LOCAL_CONF_BLACKLIST
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_INHERIT_BLACKLIST
https://docs.yoctoproject.org/ref-manual/variables.html#term-INHERIT
https://wiki.yoctoproject.org/wiki/Application Development with Extensible SDK
https://wiki.yoctoproject.org/wiki/Extensible SDK
https://docs.yoctoproject.org/sdk-manual/using.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://wiki.yoctoproject.org/wiki/SDK Generator
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPLOY_DIR
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDKMACHINE

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

• SDKIMAGE_FEATURES: Lists the features to include in the target part of the SDK.

• TOOLCHAIN_HOST_TASK: Lists packages that make up the host part of the SDK (i.e. the part that
runs on the SDKMACHINE). When you use BitBake to create the SDK, a set of default packages apply.
This variable allows you to add more packages.

• TOOLCHAIN_TARGET_TASK: Lists packages that make up the target part of the SDK (i.e. the part
built for the target hardware).

• SDKPATH: Defines the default SDK installation path offered by the installation script.

• SDK_HOST_MANIFEST: Lists all the installed packages that make up the host part of the SDK. This
variable also plays a minor role for Extensible SDK development as well. However, it is mainly used
for the Standard SDK.

• SDK_TARGET_MANIFEST: Lists all the installed packages that make up the target part of the SDK.
This variable also plays a minor role for Extensible SDK development as well. However, it is mainly
used for the Standard SDK.

See also:

• Yocto Project Wiki: Application Development with Legacy SDK

• Yocto Project Wiki: TipsAndTricks/Cmake,Eclipse, and SDKS

80 Chapter 14. Application Development SDK

https://docs.yoctoproject.org/ref-manual/variables.html#term-SDKIMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-TOOLCHAIN_HOST_TASK
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDKMACHINE
https://docs.yoctoproject.org/ref-manual/variables.html#term-TOOLCHAIN_TARGET_TASK
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDKPATH
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_HOST_MANIFEST
https://docs.yoctoproject.org/ref-manual/variables.html#term-SDK_TARGET_MANIFEST
https://wiki.yoctoproject.org/wiki/Application Development with Legacy SDK
https://wiki.yoctoproject.org/wiki/TipsAndTricks/Cmake,Eclipse, and SDKS

15
Final Closer Look

Figure 15.1: The Canadian Cross (reduced for host and target only)

81

https://en.wikipedia.org/wiki/Cross compiler#Canadian_Cross

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

82 Chapter 15. Final Closer Look

16
Read-The-Docs

16.1 Documentations

• The project documents: https://www.yoctoproject.org/documentation

– Yocto Project Quick Build

– Yocto Project Overview and Concepts Manual

– Yocto Project Reference Manual

– Yocto Project Development Tasks Manual

– Yocto Project Board Support Package Developer’s Guide

– Yocto Project Linux Kernel Development Manual

– Yocto Project Profiling and Tracing Manual

– Yocto Project Test Environment Manual

– Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

– BitBake User Manual

• The project classroom: https://www.yoctoproject.org/learn

• The project Wiki-pages: https://wiki.yoctoproject.org/

– Yocto Project Wiki: YP DevDay Austin 2020

– Yocto Project Wiki: DevDay San Diego 2019

– Yocto Project Wiki: DevDay Portland 2018 and Edinburgh 2018

– Yocto Project Wiki: DevDay US 2017 and Prague 2017

• Bootlin (former Free Electrons) Material: https://bootlin.com/docs/

– Training Materials: https://bootlin.com/doc/training/yocto/

– Conference Materials: https://bootlin.com/pub/conferences/

83

https://www.yoctoproject.org/documentation
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://docs.yoctoproject.org/overview-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/dev-manual/index.html
https://docs.yoctoproject.org/bsp-guide/index.html
https://docs.yoctoproject.org/kernel-dev/index.html
https://docs.yoctoproject.org/profile-manual/index.html
https://docs.yoctoproject.org/test-manual/index.html
https://docs.yoctoproject.org/sdk-manual/index.html
https://docs.yoctoproject.org/bitbake/index.html
https://www.yoctoproject.org/learn
https://wiki.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/YP DevDay Austin 2020
https://wiki.yoctoproject.org/wiki/DevDay San Diego 2019
https://wiki.yoctoproject.org/wiki/DevDay Portland 2018
https://wiki.yoctoproject.org/wiki/DevDay Edinburgh 2018
https://wiki.yoctoproject.org/wiki/DevDay US 2017
https://wiki.yoctoproject.org/wiki/DevDay Prague 2017
https://bootlin.com/docs/
https://bootlin.com/doc/training/yocto/
https://bootlin.com/pub/conferences/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

16.2 Presentations

• Jeffrey Osier-Mixon, Kevin McGrath: Yocto Project and Embedded OS (2015) [OMM15]

• Rudolf J. Streif : Introduction to the Yocto Project (2015) [Str15] � [Str16]

• Otavio Salvador: Yocto Training : Your next development platform for Embedded Linux
(2013) [Sal13] � [SA17]

• Alex González: Introduction to Yocto (2012) [Gon12] � [Gon18][VGS16]

• Mark Hatle, Bruce Ashfield: Introduction to the Yocto Project (2012) [HA12]

• Yi-Hsiu Hsu: Yocto Project Introduction (2015) [Hsu15]

• Yen-Chin Lee: Build your own Embedded Linux distributions by Yocto Project (2015) [Lee15]

• Nicolas Dechesne, Riku Voipio, Trevor Woerner: OpenEmbedded and Yocto Introduction (2013)
[DVW13]

• Marcelo A.L. Sanz: Yocto Project Open Source Build System and Collaboration Initiative
(2012) [San12]

84 Chapter 16. Read-The-Docs

https://www.intel.com/content/dam/www/public/us/en/documents/education/University/yocto-project-and-embedded-os-curriculum.pdf
https://elinux.org/images/a/a8/Getting_Started_with_Embedded_Linux-_Using_the_Yocto_Project_to_Build_your_Own_Custom_Embedded_Linux_Distribution.pdf
https://www.slideshare.net/OtavioSalvador/yocto-training-in-english
https://www.slideshare.net/OtavioSalvador/yocto-training-in-english
https://www.slideshare.net/alexgonzalezgarcia/introduction-to-yocto
https://old.yoctoproject.org/sites/default/files/elc-e_devday_introyocto_2.pdf
https://www.slideshare.net/YiHsiuHsu/yocto-project-introduction
https://www.slideshare.net/coldnew/build-your-own-embedded-linux-distributions-by-yocto-project
https://www.slideshare.net/linaroorg/linaro-open-embeddedworkshopwednesday
https://www.slideshare.net/marcelolorenzati/yocto-iua-2012
https://www.slideshare.net/marcelolorenzati/yocto-iua-2012

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

16.3 Books

• https://www.yoctoproject.org/learn/books/

• https://old.yoctoproject.org/blogs/jefro/2016/yocto-project-books

Table 16.1: Books about and with Yocto
2016 (480 pages)

978-0-13344-324-0

[Str16]

2017 (162 pages)

978-1-78847-046-9

[SA17]

2017 (478 pages)

978-1-78728-328-2

[Sim17]

2018 (456 pages)

978-1-78839-921-0

[Gon18]
2016 (989 pages)

978-1-78712-445-5

[VGS16]

missing one? 2016 (214 pages)

978-1-78528-195-2

[TM15]

2015 (144 pages)

978-1-78528-973-6

[Sad15]

16.3. Books 85

https://www.yoctoproject.org/learn/books/
https://old.yoctoproject.org/blogs/jefro/2016/yocto-project-books
http://book.yoctoprojectbook.com/
https://www.packtpub.com/product/embedded-linux-development-using-yocto-projects-second-edition/9781788470469
https://www.packtpub.com/product/mastering-embedded-linux-programming-second-edition/9781787283282
https://www.packtpub.com/product/embedded-linux-development-using-yocto-project-cookbook-second-edition/9781788399210
https://www.packtpub.com/eu/application-development/linux-embedded-development
https://www.packtpub.com/product/yocto-for-raspberry-pi/9781785281952
https://www.packtpub.com/product/using-yocto-project-with-beaglebone-black/9781785289736

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

86 Chapter 16. Read-The-Docs

17
Thank You

Todo: complete chapter

87

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

88 Chapter 17. Thank You

A
General Information

A.1 License

Listing 1.1: License text of “Learning Yocto”

Creative Commons Legal Code

Attribution-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN ”AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. ”Adaptation” means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be

(continues on next page)

89

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

(continued from previous page)

recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image (”synching”) will be considered an
Adaptation for the purpose of this License.

b. ”Collection” means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined below) for the purposes of this
License.

c. ”Creative Commons Compatible License” means a license that is listed
at https://creativecommons.org/compatiblelicenses that has been
approved by Creative Commons as being essentially equivalent to this
License, including, at a minimum, because that license: (i) contains
terms that have the same purpose, meaning and effect as the License
Elements of this License; and, (ii) explicitly permits the relicensing
of adaptations of works made available under that license under this
License or a Creative Commons jurisdiction license with the same
License Elements as this License.

d. ”Distribute” means to make available to the public the original and
copies of the Work or Adaptation, as appropriate, through sale or
other transfer of ownership.

e. ”License Elements” means the following high-level license attributes
as selected by Licensor and indicated in the title of this License:
Attribution, ShareAlike.

f. ”Licensor” means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

g. ”Original Author” means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

h. ”Work” means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work

(continues on next page)

90 Appendix A. General Information

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

i. ”You” means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

j. ”Publicly Perform” means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

k. ”Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation,
including any translation in any medium, takes reasonable steps to
clearly label, demarcate or otherwise identify that changes were made

(continues on next page)

A.1. License 91

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

(continued from previous page)

to the original Work. For example, a translation could be marked ”The
original work was translated from English to Spanish,” or a
modification could indicate ”The original work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated
in Collections; and,

d. to Distribute and Publicly Perform Adaptations.
e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor waives the
exclusive right to collect such royalties for any exercise by You
of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats. Subject to Section 8(f), all rights not expressly
granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You

(continues on next page)

92 Appendix A. General Information

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested. If You create an
Adaptation, upon notice from any Licensor You must, to the extent
practicable, remove from the Adaptation any credit as required by
Section 4(c), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under the
terms of: (i) this License; (ii) a later version of this License with
the same License Elements as this License; (iii) a Creative Commons
jurisdiction license (either this or a later license version) that
contains the same License Elements as this License (e.g.,
Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
License. If you license the Adaptation under one of the licenses
mentioned in (iv), you must comply with the terms of that license. If
you license the Adaptation under the terms of any of the licenses
mentioned in (i), (ii) or (iii) (the ”Applicable License”), you must
comply with the terms of the Applicable License generally and the
following provisions: (I) You must include a copy of, or the URI for,
the Applicable License with every copy of each Adaptation You
Distribute or Publicly Perform; (II) You may not offer or impose any
terms on the Adaptation that restrict the terms of the Applicable
License or the ability of the recipient of the Adaptation to exercise
the rights granted to that recipient under the terms of the Applicable
License; (III) You must keep intact all notices that refer to the
Applicable License and to the disclaimer of warranties with every copy
of the Work as included in the Adaptation You Distribute or Publicly
Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
You may not impose any effective technological measures on the
Adaptation that restrict the ability of a recipient of the Adaptation
from You to exercise the rights granted to that recipient under the
terms of the Applicable License. This Section 4(b) applies to the
Adaptation as incorporated in a Collection, but this does not require
the Collection apart from the Adaptation itself to be made subject to
the terms of the Applicable License.

c. If You Distribute, or Publicly Perform the Work or any Adaptations or
Collections, You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i) the
name of the Original Author (or pseudonym, if applicable) if supplied,
and/or if the Original Author and/or Licensor designate another party
or parties (e.g., a sponsor institute, publishing entity, journal) for
attribution (”Attribution Parties”) in Licensor's copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work;
and (iv) , consistent with Ssection 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the Adaptation
(e.g., ”French translation of the Work by Original Author,” or
”Screenplay based on original Work by Original Author”). The credit

(continues on next page)

A.1. License 93

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

(continued from previous page)

required by this Section 4(c) may be implemented in any reasonable
manner; provided, however, that in the case of a Adaptation or
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of the Adaptation or Collection appears, then as
part of these credits and in a manner at least as prominent as the
credits for the other contributing authors. For the avoidance of
doubt, You may only use the credit required by this Section for the
purpose of attribution in the manner set out above and, by exercising
Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the
Original Author, Licensor and/or Attribution Parties, as appropriate,
of You or Your use of the Work, without the separate, express prior
written permission of the Original Author, Licensor and/or Attribution
Parties.

d. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Adaptations or Collections, You must not distort, mutilate, modify or
take other derogatory action in relation to the Work which would be
prejudicial to the Original Author's honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise
of the right granted in Section 3(b) of this License (the right to
make Adaptations) would be deemed to be a distortion, mutilation,
modification or other derogatory action prejudicial to the Original
Author's honor and reputation, the Licensor will waive or not assert,
as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your
right under Section 3(b) of this License (right to make Adaptations)
but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
(continues on next page)

94 Appendix A. General Information

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

(continued from previous page)

automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor
offers to the recipient a license to the original Work on the same
terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

d. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law

(continues on next page)

A.1. License 95

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

(continued from previous page)

includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark ”Creative Commons” or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of the License.

Creative Commons may be contacted at https://creativecommons.org/.

96 Appendix A. General Information

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

A.2 Credits

Listing 1.2: Authors contributing to “Learning Yocto” development

__

Stephan Linz <linz@li-pro.net> Technical Writer
__

Listing 1.3: Supporter contributing to “Learning Yocto” development

__

JENETRIC GmbH Commissioned Projects
Method Park Holding AG Commissioned Projects
Navimatix GmbH Commissioned Projects
Yocto Project Manuals and Graphics
__

A.2. Credits 97

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

98 Appendix A. General Information

B
Glossary

B.1 Common Terms

Docutils Docutils is an open-source text processing system for processing plaintext documentation into
useful formats, such as HTML, LaTeX, man-pages, open-document or XML. It includes reStructuredText,
the easy to read, easy to use, what-you-see-is-what-you-get plaintext markup language.

See also:

• English Wikipedia: reStructuredText

LaTeX LaTeX is a document preparation system for high-quality typesetting. It is most often used for
medium-to-large technical or scientific documents but it can be used for almost any form of publishing.
LaTeX uses the TeX typesetting program for formatting its output, and is itself written in the TeX macro
language.

See also:

• English Wikipedia: LaTeX

Pybtex Pybtex is a BibTeX-compatible bibliography processor written in Python. Pybtex aims to be 100%
compatible with BibTeX. It accepts the same command line options, fully supports BibTeX’s .bst styles
and produces byte-identical output. Additionally, Pybtex is Unicode aware and Pybtex supports bibliog-
raphy formats other than BibTeX: BibTeXML (BibTeX as XML) and YAML (YAML Ain’t Markup Language).

PyEnchant PyEnchant is a Python binding for Enchant.

Pygments Pygments is a generic syntax highlighter written in Python which supports a wide range of
over 500 languages with related lexers and other text formats and is ready for new languages and
formats added easily.

ReportLab ReportLab Toolkit is an Open Source Python library for generating PDFs and graphics.

See also:

• https://www.reportlab.com/opensource/

• https://www.reportlab.com/dev/docs/

• https://hg.reportlab.com/hg-public/

• https://pypi.org/project/reportlab/

99

https://docutils.sourceforge.io/
https://en.wikipedia.org/wiki/reStructuredText
https://www.latex-project.org/
https://en.wikipedia.org/wiki/LaTeX
https://pybtex.org/
https://docs.pybtex.org/formats.html
https://docs.pybtex.org/formats.html
https://github.com/pyenchant/pyenchant
https://pygments.org/
https://pygments.org/languages/
https://pygments.org/docs/lexers/
https://www.reportlab.com/
https://www.reportlab.com/opensource/
https://www.reportlab.com/dev/docs/
https://hg.reportlab.com/hg-public/
https://pypi.org/project/reportlab/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

reStructuredText reStructuredText (RST, ReST, or reST) is a file format for textual data used primarily
in the Python programming language community for technical documentation. It is part of the Docutils
project of the Python Doc-SIG (Documentation Special Interest Group).

See also:

• English Wikipedia: reStructuredText

Sphinx Sphinx is a documentation generator written and used by the Python community. It is written
in Python, and also used in other environments. Sphinx converts reStructuredText files into HTML
websites and other formats including PDF, EPub, Texinfo and man.

reStructuredText is extensible, and Sphinx exploits its extensible nature through a number of
extensions–for auto generating documentation from source code, writing mathematical notation or
highlighting source code, etc.

See also:

• English Wikipedia: Sphinx (documentation generator)

• [Has19]

100 Appendix B. Glossary

https://docutils.sourceforge.io/rst.html
https://en.wikipedia.org/wiki/reStructuredText
https://www.sphinx-doc.org/
https://en.wikipedia.org/wiki/Sphinx (documentation generator)

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

B.2 Programming Languages

C C is a general-purpose, imperative procedural computer programming language supporting structured
programming, lexical variable scope, and recursion, with a static type system. It was designed to
be compiled to provide low-level access to memory and language constructs that map efficiently to
machine instructions, all withminimal runtime support. C has been standardized by the ANSI (American
National Standards Institute) X3J11 since 1989 (ANSI C) and by the ISO (International Organization for
Standardization)/IEC (International Electrotechnical Commission) JTC1/SC22/WG14 (ISO C).

See also:

• English Wikipedia: C (programming language)

• English Wikipedia: Compatibility of C and C++

• English Wikipedia: C18 (C standard revision): standard ratified in 2018 as ISO/IEC 9899:2018

• English Wikipedia: C11 (C standard revision): standard ratified in 2011 as ISO/IEC 9899:2011

• English Wikipedia: C99: standard ratified in 1999 as ISO/IEC 9899:1999

• English Wikipedia: C95 (C version): Amendment 1 ratified in 1995 as ISO/IEC
9899:1990/AMD1:1995

• English Wikipedia: C90 (C version): standard ratified in 1990 as ISO/IEC 9899:1990

• English Wikipedia: C89 (C version): standard ratified in 1989 as ANSI X3.159-1989

C++ C++ is a general-purpose programming language as an extension of the C programming language,
or “C with Classes”. Modern C++ implementations now has object-oriented, generic, and functional
features in addition to facilities for low-level memory manipulation. C++ is standardized by the ISO/IEC
JTC1/SC22/WG14 since 1998.

See also:

• English Wikipedia: C++

• English Wikipedia: Compatibility of C and C++

• English Wikipedia: C++17: standard ratified in 2017 as ISO/IEC 14882:2017

• English Wikipedia: C++14: standard ratified in 2014 as ISO/IEC 14882:2014

• English Wikipedia: C++11: standard ratified in 2011 as ISO/IEC 14882:2011

• English Wikipedia: C++03: standard ratified in 2003 as ISO/IEC 14882:2003

• initially standardized in 1998 as ISO/IEC 14882:1998

ES (ECMAScript)

ECMAScript ES is a general-purpose programming language, standardized by Ecma International since
1997 according to the document ECMA-262. It is a JavaScript standard meant to ensure the inter-
operability of Web pages across different Web browsers. ES is standardized by the ISO/IEC JTC1/SC22
since 1998.

See also:

• English Wikipedia: ECMAScript

• English Wikipedia: ECMAScript engine

B.2. Programming Languages 101

http://www.open-std.org/jtc1/sc22/wg14/www/projects
https://en.wikipedia.org/wiki/C (programming language)
https://en.wikipedia.org/wiki/Compatibility of C and C++
https://en.wikipedia.org/wiki/C18 (C standard revision)
https://en.wikipedia.org/wiki/C11 (C standard revision)
https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/C95 (C version)
https://en.wikipedia.org/wiki/C90 (C version)
https://en.wikipedia.org/wiki/C89 (C version)
https://isocpp.org/
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Compatibility of C and C++
https://en.wikipedia.org/wiki/C++17
https://en.wikipedia.org/wiki/C++14
https://en.wikipedia.org/wiki/C++11
https://en.wikipedia.org/wiki/C++03
https://www.ecma-international.org/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/ECMAScript engine

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

• English Wikipedia: List of ECMAScript engines

• ES Edition 11: standard ratified in 2020 as ECMA-262-11:2020

• ES Edition 5.1: standard ratified in 2011 as ISO/IEC 16262:2011

• ES Edition 2: initially standardized in 1998 as ISO/IEC 16262:1998

JS (JavaScript)

JavaScript JS is a programming language that conforms to the ECMAScript specification. JavaScript is high-
level, often just-in-time compiled, and multi-paradigm. It has curly-bracket syntax, dynamic typing,
prototype-based object-orientation, and first-class functions.

Alongside HTML and CSS, JavaScript is one of the core technologies of the World Wide Web. JavaScript
enables interactive web pages and is an essential part of web applications. The vast majority of web-
sites use it for client-side page behavior, and all major web browsers have a dedicated JavaScript
engine to execute it.

See also:

• English Wikipedia: JavaScript

• English Wikipedia: JavaScript engine

• English Wikipedia: List of JavaScript engines

Python Python is an interpreted, high-level and general-purpose programming language. Python inter-
preters are available for many operating systems. A global community of programmers develops and
maintains CPython, a free and open-source reference implementation. A non-profit organization, the
Python Software Foundation, manages and directs resources for Python and CPython development.

CPython is the reference implementation of Python. It is written in C, meeting the C89 standard with
several select C99 features. Python’s development is conducted largely through the PEP (Python En-
hancement Proposal) process, the primary mechanism for proposing major new features, collecting
community input on issues and documenting Python design decisions. Python coding style is covered
in PEP 8.

See also:

• English Wikipedia: Python (programming language)

• English Wikipedia: CPython

• [Swe19]

• [Swe20]

102 Appendix B. Glossary

https://en.wikipedia.org/wiki/List of ECMAScript engines
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript engine
https://en.wikipedia.org/wiki/List of JavaScript engines
https://www.python.org/
https://www.python.org/dev/peps/pep-0008
https://en.wikipedia.org/wiki/Python (programming language)
https://en.wikipedia.org/wiki/CPython

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

B.3 Technologies

BibTeX BibTeX is a widely used bibliography management tool in LaTeX, with BibTeX the bibliography
entries are kept in a separate file and then imported into the main document.

See also:

• English Wikipedia: BibTeX

CORBA (Common Object Request Broker Architecture)

MOF (Meta-Object Facility) MOF is an OMG (Object Management Group) standard for model-driven en-
gineering. Its purpose is to provide a type system for entities in the CORBA architecture and a set of
interfaces through which those types can be created and manipulated.

See also:

• OCL and QVT

• English Wikipedia: Meta-Object Facility

• MOF 2.5.1: initially standardized in 2016OMGMeta Object Facility Core Specification 2.5.1
2016/10/01

• MOF 2.5: initially standardized in 2015 OMG Meta Object Facility Core Specification 2.5
2015/06/05

• ISO 19508:2014: MOF 2.4.2 standard formally published in 2014 ISO/IEC 19508:2014(E)
2014/04/05

• MOF 2.4.2: initially standardized in 2014 OMG Meta Object Facility Core Specification 2.4.2
2014/04/03

• MOF 2.4.1: initially standardized in 2013 OMG Meta Object Facility Core Specification 2.4.1
2013/06/01

• MOF 2.0: initially standardized in 2006 Meta Object Facility Core Specification 2.0 2006/01/01

• ISO 19502:2005: MOF 1.4.1 standard formally published in 2005 ISO/IEC 19502:2005(E)
2005/05/05

• MOF 1.4: initially standardized in 2002 Meta Object Facility Specification 1.4 2002/04/03

CSS (Cascading Style Sheets) CSS is a style sheet language used for describing the presentation of a
document written in a markup language like HTML. CSS is a cornerstone technology of the WWW (World
Wide Web), alongside HTML and JavaScript. In addition to HTML, other markup languages support the
use of CSS including plain XML and SVG. The CSS specifications is standardized by the W3C (World
Wide Web Consortium)/TR/CSS since 1996.

See also:

• English Wikipedia: CSS

• CSS 2.1: standard ratified in 2011 W3C REC-CSS2-20110607

• CSS 2.0: standard ratified in 1998 W3C REC-CSS2-19980512

• CSS 1.0: initially standardized in 1996 W3C REC-CSS1-961217

B.3. Technologies 103

http://www.bibtex.org/
https://en.wikipedia.org/wiki/BibTeX
https://www.omg.org/spec/MOF/
https://en.wikipedia.org/wiki/Meta-Object Facility
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/MOF/2.5
https://www.omg.org/spec/MOF/ISO/19508/PDF
https://www.omg.org/spec/MOF/2.4.2
https://www.omg.org/spec/MOF/2.4.1
https://www.omg.org/spec/MOF/2.0
https://www.omg.org/spec/MOF/ISO/19502/PDF
https://www.omg.org/spec/MOF/1.4
https://www.w3.org/Style/CSS/
https://en.wikipedia.org/wiki/CSS
https://www.w3.org/TR/2011/REC-CSS2-20110607/
https://www.w3.org/TR/1998/REC-CSS2-19980512/
https://www.w3.org/TR/REC-CSS1-961217

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

Enchant Enchant is a free software project developed as part of the AbiWord word processor with the aim
of unifying access to the various existing spell-checker software.

See also:

• English Wikipedia: Enchant (software)

HTML (Hypertext Markup Language) HTML is the standard markup language for documents designed
to be displayed in a web browser. It can be assisted by technologies such as CSS and scripting lan-
guages such as JavaScript. The HTML specifications is standardized by the W3C/TR/HTML since 1997
and ISO/IEC JTC1/SC34 since 1998.

See also:

• English Wikipedia: HTML

• English Wikipedia: HTML5: latest live standard was released in 2017 W3C REC-HTML52-
20171214

• English Wikipedia: HTML4: standard ratified in 1999 W3C REC-HTML40 and 2000 ISO/IEC
15445:2000

• English Wikipedia: HTML3: standard ratified in 1997 W3C REC-HTML32

• English Wikipedia: HTML2: initially standardized in 1995 as RFC 1866 (RFC 1866)

OCL (Object Constraint Language) OCL is a declarative language describing rules applying to UML
models and is now part of the UML standard but as separate document. Initially, OCL was merely a
formal specification language extension for UML. OCL may now be used with any MOF meta-model,
including UML, and is a precise text language that provides constraint and object query expressions
on any such kind of meta-model that cannot otherwise be expressed by diagrammatic notation. OCL
is a key component of the new OMG standard recommendation for transforming models, the QVT
specification.

See also:

• UML, MOF and QVT

• English Wikipedia: Object Constraint Language

• OCL 2.4: standard ratified in 2014 Object Constraint Language 2.4 2014/02/03

• ISO 19507:2012: OCL 2.3.1 standard formally published in 2012 ISO/IEC 19507:2012(E)
2012/05/09

• OCL 2.3.1: standard ratified in 2011 Object Constraint Language 2.3.1 2012/01/01

• OCL 2.2: standard ratified in 2010 Object Constraint Language 2.2 2010/02/01

• OCL 2.0: standard ratified in 2006 Object Constraint Language 2.0 2006/05/01

• UML 1.3 (Chapter 7): initially standardized in 2000

PDF (Portable Document Format) PDF is a file format developed by Adobe in 1993 to present docu-
ments, including text formatting and images, in a manner independent of application software, hard-
ware, and operating systems. Based on the PS (PostScript) language, each PDF file encapsulates a
complete description of a fixed-layout flat document, including the text, fonts, vector graphics, raster
images and other information needed to display it. PDF is standardized by the ISO TC171/SC2/WG8
since 2008, and no longer requires any royalties for its implementation.

104 Appendix B. Glossary

https://abiword.github.io/enchant/
https://en.wikipedia.org/wiki/Enchant (software)
https://html.spec.whatwg.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/HTML4
https://en.wikipedia.org/wiki/HTML3
https://en.wikipedia.org/wiki/HTML2
https://tools.ietf.org/html/rfc1866.html
https://www.omg.org/spec/OCL/
https://en.wikipedia.org/wiki/Object Constraint Language
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/ISO/19507/PDF
https://www.omg.org/spec/OCL/2.3.1
https://www.omg.org/spec/OCL/2.2
https://www.omg.org/spec/OCL/2.0
https://www.omg.org/spec/UML/1.3
https://www.pdfa.org/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

ISO standardized subsets of PDF:

• English Wikipedia: PDF/X: since 2001, series of ISO 15929 and ISO 15930 standards

• English Wikipedia: PDF/A: since 2005, series of ISO 19005 standards

• English Wikipedia: PDF/E: since 2008, series of ISO 24517

• English Wikipedia: PDF/VT: since 2010, ISO 16612-2

• English Wikipedia: PDF/UA: since 2012, ISO 14289-1

See also:

• English Wikipedia: PDF

• English Wikipedia: History of the Portable Document Format (PDF)

• PDF 2.0: standard ratified in 2017 as ISO 32000-2:2017

• PDF 1.7: initially standardized in 2008 as ISO 32000-1:2008

QVT (Query/View/Transformation) QVT is a standard set of languages for model transformation de-
fined by the OMG.

See also:

• OCL and MOF

• English Wikipedia: QVT

• QVT 1.3: standard ratified in 2016 MOF 2.0 Query/View/Transformation Specification 1.3
2016/06/03

• QVT 1.2: standard ratified in 2015 MOF 2.0 Query/View/Transformation Specification 1.2
2015/02/01

• QVT 1.1: standard ratified in 2011 MOF 2.0 Query/View/Transformation Specification 1.1
2011/01/01

• QVT 1.0: initially standardized in 2008 MOF 2.0 Query/View/Transformation Specification 1.0
2008/04/03

SVG (Scalable Vector Graphics) SVG is an XML-based vector image format for two-dimensional graph-
ics with support for interactivity and animation. The SVG specification is standardized by the
W3C/TR/SVG since 1999 as an open standard.

SVG drawings can be dynamic and interactive. Time-based modifications to the elements can be de-
scribed in SMIL (Synchronized Multimedia Integration Language), or can be programmed in a scripting
language (e.g. ECMAScript or JavaScript). The W3C explicitly recommends SMIL as the standard for
animation in SVG.

See also:

• English Wikipedia: SVG

• SVG 2.0: latest standard draft was released in 2020

• SVG 1.1 Second Edition: standard ratified in 2011 W3C REC-SVG11-20110816

• SVG 1.1: standard ratified in 2003 W3C REC-SVG11-20030114

• SVG 1.0: initially standardized in 2001 W3C REC-SVG-20010904

B.3. Technologies 105

https://en.wikipedia.org/wiki/PDF/X
https://en.wikipedia.org/wiki/PDF/A
https://en.wikipedia.org/wiki/PDF/E
https://en.wikipedia.org/wiki/PDF/VT
https://en.wikipedia.org/wiki/PDF/UA
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/History of the Portable Document Format (PDF)
https://www.omg.org/spec/QVT/
https://en.wikipedia.org/wiki/QVT
https://www.omg.org/spec/QVT/1.3
https://www.omg.org/spec/QVT/1.2
https://www.omg.org/spec/QVT/1.1
https://www.omg.org/spec/QVT/1.0
https://www.w3.org/Graphics/SVG/
https://en.wikipedia.org/wiki/SVG
https://svgwg.org/
https://www.w3.org/TR/2011/REC-SVG11-20110816/
https://www.w3.org/TR/2003/REC-SVG11-20030114/
https://www.w3.org/TR/2001/REC-SVG-20010904/

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

SysML (Systems Modeling Language)

BPMN (Business Process Model and Notation)

UML (Unified Modeling Language) UML is a general-purpose, developmental, modeling language in
the field of software engineering that is intended to provide a standard way to visualize the design
of a system. In 1997, UML was adopted as a standard by the OMG, and has been managed by this
organization ever since. In 2005, UML was also published by ISO as an approved standard.

In 2007 with the release of UML 2.1.2, two new significant specifications for certain technology areas
have split off. These are: SysML, BPMN.

See also:

• OCL, MOF and QVT

• English Wikipedia: Unified Modeling Language

• UML 2.5.1: standard adopted from 2.5 in 2017 OMG Unified Modeling Language 2.5.1
2017/12/05

• UML 2.5: standard released in 2012 and ratified in 2015 OMG Unified Modeling Language 2.5
2015/03/01

• ISO 19505-1:2012 and ISO 19505-2:2012: UML 2.4.1 standard formally published in 2012
ISO/IEC 19505-1:2012(E) 2012/05/06 and ISO/IEC 19505-2:2012(E) 2012/05/07

• UML 2.4.1 and UMLDI 1.0: standard ratified in 2011 OMG UML Superstructure Specification
2.4.1 2011/08/06, OMG UML Infrastructure Specification 2.4.1 2011/08/05 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.4 and UMLDI 1.0: standard ratified in 2011 OMG UML Superstructure Specification
2.4 2010/11/14, OMG UML Infrastructure Specification 2.4 2010/11/16 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.3 and UMLDI 1.0: standard ratified in 2010 OMG UML Superstructure Specification
2.3 2010/05/05, OMG UML Infrastructure Specification 2.3 2010/05/03 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.2 and UMLDI 1.0: standard ratified in 2009 OMG UML Superstructure Specification
2.2 2009/02/02, OMG UML Infrastructure Specification 2.2 2009/02/04 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.1.2 and UMLDI 1.0: standard ratified in 2007 OMG UML Superstructure Specification
2.1.2 2007/11/02, OMG UML Infrastructure Specification 2.1.2 2007/11/04 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.1.1 and UMLDI 1.0: standard ratified in 2007 OMG UML Superstructure Specification
2.1.1 2007/02/05, OMG UML Infrastructure Specification 2.1.1 2007/02/06 and OMG UML Diagram
Interchange 1.0 2006/04/04

• UML 2.0: standard ratified in 2005 OMG UML Superstructure Specification 2.0 2005/07/04 and
OMG UML Infrastructure Specification 2.0 2005/07/05

• ISO 19501:2005: UML 1.4.2 standard formally published in 2005 ISO/IEC 19501:2005(E)
2005/04/01

• UML 1.5: standard ratified in 2003OMGUnifiedModeling Language Specification 1.5 2003/03/01

106 Appendix B. Glossary

https://www.uml.org/
https://en.wikipedia.org/wiki/Unified Modeling Language
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5
https://www.omg.org/spec/UML/ISO/19505-1/PDF
https://www.omg.org/spec/UML/ISO/19505-2/PDF
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.4
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.3
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.2
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.1.2
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.1.1
https://www.omg.org/spec/UMLDI/1.0
https://www.omg.org/spec/UML/2.0
https://www.omg.org/spec/UML/ISO/19501/PDF
https://www.omg.org/spec/UML/1.5

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000

Revision: 0.0.0-75-g2094a49

• UML 1.4: standard ratified in 2001OMGUnifiedModeling Language Specification 1.4 2001/09/07

• UML 1.3: standard ratified in 2000OMGUnifiedModeling Language Specification 1.3 2000/03/01

• UML 1.2: standard ratified in 1999

• UML 1.1: initially standardized in 1997

TeX TeX is a computer language designed for use in typesetting system; in particular, for typesetting math
and other technical material. It has been noted as one of the most sophisticated digital typographical
systems and is also used for many other typesetting tasks, especially in the form of LaTeX, ConTeXt,
and other macro packages.

See also:

• English Wikipedia: TeX

XML (Extensible Markup Language) XML is a markup language that defines a set of rules for encod-
ing documents in a format that is both human-readable and machine-readable. The design of XML
focuses on documents, the language is widely used for the representation of arbitrary data structures.
Several schema systems exist to aid in the definition of XML-based languages. The XML specification
is standardized by the W3C/TR/XML since 1998 as an open standard.

See also:

• English Wikipedia: XML

• XML 1.1 Second Edition: standard ratified in 2006 W3C REC-XML11-20060816

• XML 1.1: standard ratified in 2004 W3C REC-XML11-20040204

• XML 1.0 Fifth Edition: standard ratified in 2008 W3C REC-XML-20081126

• XML 1.0: initially standardized in 1998 W3C REC-SVG-20010904

B.3. Technologies 107

https://www.omg.org/spec/UML/1.4
https://www.omg.org/spec/UML/1.3
https://www.omg.org/spec/UML/1.2
https://www.omg.org/spec/UML/1.1
https://tug.org/
https://en.wikipedia.org/wiki/TeX
https://www.w3.org/XML/Core/
https://en.wikipedia.org/wiki/XML
https://www.w3.org/TR/2006/REC-xml11-20060816/
https://www.w3.org/TR/2004/REC-xml11-20040204/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/1998/REC-xml-19980210

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

108 Appendix B. Glossary

Acronyms

This is a list of abbreviations and acronyms used in this document and will be kept up to date manually and
is not generated automatically. There is no automatism that assists the maintenance of the items in this list.
As long as there is no entry in the glossary for a commonly known abbreviation, it will also be listed here as
an acronym.

generally

BSP Board Support Package

CD Continuous Deployment / Delivery

CI Continuous Integration

distro distribution (distro)

OE OpenEmbedded

SCMP (Software Configuration Management Plan) Software Configuration Management
Plan

SCMS Software Configuration Management System

SDK Software Development Kit

specifically

not yet

109

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

110 Appendix B. Glossary

Listings

1.1 License text of “Learning Yocto” . 89
1.2 Authors contributing to “Learning Yocto” development . 97
1.3 Supporter contributing to “Learning Yocto” development 97

111

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

112 Appendix B. Glossary

List of Tables

1 Document Revisions of “Learning Yocto” . 7

14.1 Features summary for the two SDK types . 78

16.1 Books about and with Yocto . 85

113

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

114 List of Tables

List of Figures

1.1 The Open Source Challenge . 9
1.2 Example: UI Toolkits . 10
1.3 Collaboration as a Solution . 10

4.1 Yocto Project Deliveries [OMM15] . 22
4.2 The Yocto Project Community [OMM15] . 24

5.1 Yocto Build System Features and their interaction . 29

6.1 Revision Control of your Embedded Linux System using Git repo 35

7.1 OpenEmbedded Build System Concepts as part of Yocto Build System Workflow 37
7.2 User Configuration as part of Yocto Build System Workflow 38
7.3 Metadata Layers as part of Yocto Build System Workflow 39
7.4 Sources as part of Yocto Build System Workflow . 40
7.5 Package Feeds as part of Yocto Build System Workflow 41
7.6 BitBake Tool as part of Yocto WBuild System orkflow . 42
7.7 Images as part of Yocto Build System Workflow . 43
7.8 Application Development SDK as part of Yocto Build System Workflow 44

8.1 User Configuration with Details . 45

9.1 Metadata Layers with Details . 49
9.2 Metadata Layer Priorities (BBFILE_PRIORITY_LayerName) 52

10.1 Sources with Details . 61

11.1 Package Feeds with Details . 65

12.1 Source Fetching with Details . 68
12.2 Patching with Details . 69
12.3 Configuration, Compilation, and Staging with Details . 70
12.4 Package Splitting with Details . 71
12.5 Image Generation with Details 1/2 . 72
12.6 Image Generation with Details 2/2 . 73

115

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

12.7 SDK Generation with Details . 74

13.1 Images with Details . 75

14.1 Application Development SDK with Details . 77

15.1 The Canadian Cross (reduced for host and target only) 81

116 List of Figures

List of Equations

117

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

118 List of Equations

List of Downloads

Note: List of Downloads is not fully supported for LaTeX. All entries in the list are not linked and can not be
provided together with the document.

Legal Notice, Credits, and Contributions

• LICENSE

• CREDITS

119

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

120 List of Equations

List of Issues

Todo:

improve table formatting and colspec for LaTeX/PDF: (1) provide overwrite directions for tabular and
longtable environments, (2) start with global colorization of table header and alternately colored rows

(See template folder below /home/travis/build/lipro/lpn-show-learning-yocto/source and add content in
preamble.tex.in)

121

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

122 List of Equations

Bibliography

[DVW13] Nicolas Dechesne, Riku Voipio, and Trevor Woerner. Openembedded and yocto introduction. 2013.
URL: https://www.slideshare.net/linaroorg/linaro-open-embeddedworkshopwednesday (visited
on January 2021).

[Gon12] Alex González. Introduction to yocto. 2012. URL: https://www.slideshare.net/alexgonzalezgarcia/introduction-
to-yocto (visited on January 2021).

[Gon18] Alex González. Embedded Linux Development Using Yocto Project Cookbook : Practical
recipes to help you leverage the power of Yocto to build exciting Linux-based systems.
Packt Publishing, Birmingham, United Kingdom, 2nd edition, 2018. ISBN 1788399218. URL:
https://www.amazon.com/dp/1788399218 (visited on January 2021).

[Has19] Jan Ulrich Hasecke. Software-Dokumentation mit Sphinx. CreateSpace (was part of Amazon.com
Inc.), today Kindle Direct Publishing (KDP), Seattle, United States of America, 2nd revised edi-
tion, 2019. ISBN 1793008779. URL: https://www.amazon.com/dp/1793008779 (visited on Jan-
uary 2021).

[HA12] Mark Hatle and Bruce Ashfield. Introduction to the yocto project. 2012. URL:
https://old.yoctoproject.org/sites/default/files/elc-e_devday_introyocto_2.pdf (visited on January
2021).

[Hsu15] Yi-Hsiu Hsu. Yocto project introduction. 2015. URL: https://www.slideshare.net/YiHsiuHsu/yocto-
project-introduction (visited on January 2021).

[Lee15] Yen-Chin Lee. Build your own embedded linux distributions by yocto project. 2015.
URL: https://www.slideshare.net/coldnew/build-your-own-embedded-linux-distributions-by-yocto-
project (visited on January 2021).

[OMM15] Jeffrey Osier-Mixon and Kevin McGrath. Yocto project and embedded os. 2015. URL:
https://www.intel.com/content/dam/www/public/us/en/documents/education/University/yocto-
project-and-embedded-os-curriculum.pdf (visited on January 2021).

[Sad15] H M Irfan Sadiq. Using Yocto Project with BeagleBone Black : Unleash the power of the BeagleBone
Black embedded platformwith Yocto Project. Packt Publishing, Birmingham, United Kingdom, 2015.
ISBN 178528195X. URL: https://www.amazon.com/dp/178528973X (visited on January 2021).

[Sal13] Otavio Salvador. Yocto training : your next development platform for embedded linux. 2013. URL:
https://www.slideshare.net/OtavioSalvador/yocto-training-in-english (visited on January 2021).

123

https://www.slideshare.net/linaroorg/linaro-open-embeddedworkshopwednesday
https://www.slideshare.net/alexgonzalezgarcia/introduction-to-yocto
https://www.slideshare.net/alexgonzalezgarcia/introduction-to-yocto
https://www.amazon.com/dp/1788399218
https://www.amazon.com/dp/1793008779
https://old.yoctoproject.org/sites/default/files/elc-e_devday_introyocto_2.pdf
https://www.slideshare.net/YiHsiuHsu/yocto-project-introduction
https://www.slideshare.net/YiHsiuHsu/yocto-project-introduction
https://www.slideshare.net/coldnew/build-your-own-embedded-linux-distributions-by-yocto-project
https://www.slideshare.net/coldnew/build-your-own-embedded-linux-distributions-by-yocto-project
https://www.intel.com/content/dam/www/public/us/en/documents/education/University/yocto-project-and-embedded-os-curriculum.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/education/University/yocto-project-and-embedded-os-curriculum.pdf
https://www.amazon.com/dp/178528973X
https://www.slideshare.net/OtavioSalvador/yocto-training-in-english

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

[SA17] Otavio Salvador and Daiane Angolini. Embedded Linux Development using Yocto Projects :
Learn to leverage the power of Yocto Project to build efficient Linux-based products. Packt
Publishing, Birmingham, United Kingdom, 2nd revised edition, 2017. ISBN 178847046X. URL:
https://www.amazon.com/dp/178847046X (visited on January 2021).

[San12] Marcelo A.L. Sanz. Yocto project open source build system and collaboration initiative. 2012. URL:
https://www.slideshare.net/marcelolorenzati/yocto-iua-2012 (visited on January 2021).

[Sim17] Chris Simmonds. Mastering Embedded Linux Programming : Unleash the full potential of Embed-
ded Linux with Linux 4.9 and Yocto Project 2.2. Packt Publishing, Birmingham, United Kingdom,
2nd edition, 2017. ISBN 1787283283. URL: https://www.amazon.com/dp/1787283283 (visited
on January 2021).

[Str15] Rudolf J. Streif. Introduction to the yocto project. 2015. URL:
https://elinux.org/images/a/a8/Getting_Started_with_Embedded_Linux-
_Using_the_Yocto_Project_to_Build_your_Own_Custom_Embedded_Linux_Distribution.pdf
(visited on January 2021).

[Str16] Rudolf J. Streif. Embedded Linux Systems with the Yocto Project. Prentice Hall, Boston, United
States of America, 2016. ISBN 0133443248. URL: https://www.amazon.com/dp/0133443248 (vis-
ited on January 2021).

[Swe19] Al Sweigart. Automate the boring stuff with Python : practical programming for total beginners.
No Starch Press, San Francisco, United States of America, 2nd edition, 2019. ISBN 1593279922.
URL: https://www.amazon.com/dp/1593279922 (visited on January 2021).

[Swe20] Al Sweigart. Routineaufgaben mit Python automatisieren : Praktische Programmierlösungen für
Einsteiger. Dpunkt.Verlag GmbH, Heidelberg, Germany, 2nd edition, 2020. ISBN 3864907535. URL:
https://www.amazon.com/dp/3864907535 (visited on January 2021).

[TM15] Pierre-Jean Texier and Petter Mabäcker. Yocto for Raspberry Pi : Create unique and amazing projects
by using the powerful combination of Yocto and Raspberry Pi. Packt Publishing, Birmingham, United
Kingdom, 2015. ISBN 178528195X. URL: https://www.amazon.com/dp/178528195X (visited on
January 2021).

[VGS16] Alexandru Vaduva, Alex González, and Chris Simmonds. Linux: Embedded Development Learn-
ing Path : Leverage the power of Linux to develop captivating and powerful embedded
Linux projects. Packt Publishing, Birmingham, United Kingdom, 2016. ISBN 1787124452. URL:
https://www.amazon.com/dp/B01LYNTT8V (visited on January 2021).

124 Bibliography

https://www.amazon.com/dp/178847046X
https://www.slideshare.net/marcelolorenzati/yocto-iua-2012
https://www.amazon.com/dp/1787283283
https://elinux.org/images/a/a8/Getting_Started_with_Embedded_Linux-_Using_the_Yocto_Project_to_Build_your_Own_Custom_Embedded_Linux_Distribution.pdf
https://elinux.org/images/a/a8/Getting_Started_with_Embedded_Linux-_Using_the_Yocto_Project_to_Build_your_Own_Custom_Embedded_Linux_Distribution.pdf
https://www.amazon.com/dp/0133443248
https://www.amazon.com/dp/1593279922
https://www.amazon.com/dp/3864907535
https://www.amazon.com/dp/178528195X
https://www.amazon.com/dp/B01LYNTT8V

Index

A
Abbreviations

Presentation Learning Yocto, 108
Acronyms

Presentation Learning Yocto, 108
Appendix

Presentation Learning Yocto, 89

B
Bibliography

Presentation Learning Yocto, 121
BibTeX, 103
BPMN, 106

C
C, 101
C++, 101
CORBA, 103
Credits

Presentation Learning Yocto, 97
CSS, 103

D
Docutils, 99
Downloads

Presentation Learning Yocto, 117

E
ECMAScript, 101
Enchant, 104
Equations

Presentation Learning Yocto, 116
ES, 101

F
Figures

Presentation Learning Yocto, 113

G
Glossary

Presentation Learning Yocto, 99

H
HTML, 104

I
Issues

Presentation Learning Yocto, 119

J
JavaScript, 102
JS, 102

L
LaTeX, 99
Learning Yocto

Abbreviations Presentation, 108
Acronyms Presentation, 108
Appendix Presentation, 89
Bibliography Presentation, 121
Credits Presentation, 97
Downloads Presentation, 117
Equations Presentation, 116
Figures Presentation, 113
Glossary Presentation, 99
Issues Presentation, 119
License Presentation, 89
List of Downloads Presentation, 117
List of Equations Presentation, 116
List of Figures Presentation, 113
List of Issues Presentation, 119
List of Listings Presentation, 109
List of Tables Presentation, 111
Listings Presentation, 109
Tables Presentation, 111

License
Presentation Learning Yocto, 89

List of Downloads
Presentation Learning Yocto, 117

List of Equations
Presentation Learning Yocto, 116

List of Figures
Presentation Learning Yocto, 113

List of Issues
Presentation Learning Yocto, 119

125

Yocto
Learning, Document Number: LPN-QMS-SHOW-00000
Revision: 0.0.0-75-g2094a49

List of Listings
Presentation Learning Yocto, 109

List of Tables
Presentation Learning Yocto, 111

Listings
Presentation Learning Yocto, 109

M
MOF, 103

O
OCL, 104

P
PDF, 104
Presentation

Learning Yocto, Abbreviations, 108
Learning Yocto, Acronyms, 108
Learning Yocto, Appendix, 89
Learning Yocto, Bibliography, 121
Learning Yocto, Credits, 97
Learning Yocto, Downloads, 117
Learning Yocto, Equations, 116
Learning Yocto, Figures, 113
Learning Yocto, Glossary, 99
Learning Yocto, Issues, 119
Learning Yocto, License, 89
Learning Yocto, List of Downloads, 117
Learning Yocto, List of Equations, 116
Learning Yocto, List of Figures, 113
Learning Yocto, List of Issues, 119
Learning Yocto, List of Listings, 109
Learning Yocto, List of Tables, 111
Learning Yocto, Listings, 109
Learning Yocto, Tables, 111

Pybtex, 99
PyEnchant, 99
Pygments, 99
Python, 102
Python Enhancement Proposals

PEP 8, 102

Q
QVT, 105

R
ReportLab, 99
reStructuredText, 100
RFC

RFC 1866, 104

S
Sphinx, 100
SVG, 105
SysML, 106

T
Tables

Presentation Learning Yocto, 111

TeX, 107

U
UML, 106

X
XML, 107

126 Index

	1 Challenge
	1.1 Example: UI Toolkits
	1.2 Collaboration
	1.3 Market
	1.4 Vendor and Contractor
	1.5 Community
	1.6 Business
	1.7 Domains

	2 Intentions
	3 Decision
	3.1 Android
	3.2 Baserock
	3.3 Buildroot
	3.4 OpenEmbedded
	3.5 OpenWrt
	3.6 Reflection

	4 About
	4.1 Governance Structure
	4.2 Achievement and Standing
	4.3 Offer and Support
	4.4 Yocto Project Provides
	4.5 Yocto Project Community

	5 Terms, Concepts, Idioms
	6 Git Repo Manifest
	6.1 Platform Manifest
	6.2 Platform Pipeline

	7 Build System
	7.1 Configuration Area
	7.2 Metadata Area
	7.3 Source Area
	7.4 Package Area
	7.5 BitBake Tool Area
	7.6 Images Area
	7.7 SDK Area

	8 User Configuration
	8.1 bblayers.conf
	8.2 local.conf
	8.3 setup-environment

	9 Metadata Layers
	9.1 Meta Layer Types
	9.2 Meta Layer Stack
	9.3 Meta Layer Machines
	9.3.1 hydrogen.conf
	9.3.2 helium.conf

	9.4 Meta Layer Distros
	9.4.1 cedi.conf

	9.5 Meta Layer Images
	9.5.1 central-image.bb
	9.5.2 central-image.bbclass
	9.5.3 central-image-version.bbclass
	9.5.4 packagegroup-central-boot.bb
	9.5.5 packagegroup-central-tools-testapps.bb

	10 Source Files
	10.1 Upstream Project Releases
	10.2 Local Projects
	10.3 Source Code Manager (optional)
	10.4 Source Mirror(s)

	11 Package Feeds
	12 BitBake Tool
	12.1 Inherit
	12.2 Fetching
	12.2.1 Fetching in Recipe

	12.3 Patching
	12.3.1 Patching in Recipe

	12.4 Compilation
	12.4.1 Compilation in Recipe

	12.5 Packaging
	12.5.1 Packaging in Recipe

	12.6 Image Generation
	12.7 SDK Generation

	13 Images
	14 Application Development SDK
	15 Final Closer Look
	16 Read-The-Docs
	16.1 Documentations
	16.2 Presentations
	16.3 Books

	17 Thank You
	Appendices
	A General Information
	A.1 License
	A.2 Credits

	B Glossary
	B.1 Common Terms
	B.2 Programming Languages
	B.3 Technologies

	Acronyms
	Listings
	List of Tables
	List of Figures
	List of Equations
	List of Downloads
	List of Issues
	Bibliography
	Index

